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Departamento de Informática FCT/UNL, Lisboa, Portugal

Luca Cardelli
Microsoft Research, Cambridge, UK

Abstract

We present a logic that can express properties of freshness,secrecy, structure,
and behavior of concurrent systems. In addition to standardlogical and tempo-
ral operators, our logic includes spatial operations corresponding to composition,
local name restriction, and a primitive fresh name quantifier. Properties can also
be defined by recursion; a central aim of this paper is then thecombination of a
logical notion of freshness with inductive and coinductivedefinitions of properties.

1 Introduction

We present a logic for describing the behavior and spatial structure of concurrent sys-
tems. Logics for concurrent systems are certainly not new [22, 14, 29, 16], but the
intent to describe spatial properties seems to have arisen only recently. The spatial
properties that we consider here are essentially of two kinds: whether a system is com-
posed of two or more identifiable subsystems, and whether a system restricts the use
of certain resources to certain subsystems. Previous work [10] has considered also
whether a system is composed of named locations; in that case, the notion of spatial
structure is particularly natural.

The initial motivation for studying these logics was to be able to specify systems
that deal with fresh or secret resources such as keys, nonces, channels, and locations.
In previous papers [10, 6], we have found that the spatial properties of process com-
position and of location structures are fairly manageable.Instead, the properties of
restriction are much more challenging, and are closely related to the study of logical
notions of freshness [20, 19, 31].

The main aim of this paper is to advance the study of restriction started in [11, 6]
and to build a closer correspondence with treatments of freshness [19]. For simplicity,
we use a basic process calculus (the asynchronous�-calculus) that includes composi-
tion and restriction. We omit locations in this paper because they are easy to add along
the lines of [10], and are comparatively easier to handle than composition or restric-
tion. It will become clear that our general approach is fairly insensitive to the details of
specific process calculi, and is largely insensitive to the “dynamics” (reduction behav-
ior) of specific calculi. Therefore, it can be easily adaptedto other calculi, and perhaps
even generalized to process frameworks [21].
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A formula in our logic describes a property of a particular part of a concurrent sys-
tem at a particular time; therefore it is modal in space as well as in time. This dual
modality can be captured by standard box and diamond operators, reflecting reachabil-
ity in space and in time [10, 6]. As a further contribution of this paper, though, we wish
to investigate a more general framework akin to the�-calculus [25], where formulas
can be recursive and can subsume box and diamond operators. Moreover, by com-
bining spatial and temporal connectives with recursion, wecan then define new and
interesting modalities, such as “under an arbitrary numberof restrictions”. The most
technically challenging part of the paper is then the interaction of recursive formulas,
already present in [6, 9, 16], with logical notions of freshness, composition, and name
restriction, already present in [6, 11].

We now give a brief overview of the constructs of the logic, before moving on to the
formal treatment. LetP be the set of (asynchronous�-calculus) processes. Aproperty
is a set of processes; a subset ofP . A closed formula denotes a property, namely, it
denotes the collection of processes satisfying that formula.� The collection of all properties (which is not quite the powerset ofP , as we shall
discuss) has the structure of a Boolean Algebra under set inclusion, so we naturally get
boolean connectives(we takeF, A ^B andA) B as primitive).� The above propositional fragment is extended to predicate logic via a univer-
sal quantifier8x:A. This quantifier has standard properties, but the bound variablex
ranges always over the countable set of channel names of the process calculus.� The collection of all properties has also the structure of a quantale, induced by
the parallel composition operator over processes. In the logic, this is reflected by the
operatorsAjB (the tensor, or parallel composition, of two properties),0 (the unit of
the tensor, or collection of void processes), andA.B (the linear implication associated
with the tensor). This last operator corresponds to context-system specifications, which
are the concurrency theory equivalent of pre/post conditions. In addition,A . B is a
first class formula that can be freely and usefully combined with other operators.� In much the same way that parallel process composition induces the quantale
structure, process restriction induces a pair of operatorsnrA andA�n, called reve-
lation and hiding, that give us a basis for describing restricted processes at the logical
level.� The notion of “fresh name” is introduced by a quantifierIx:A; a processP
satisfiesIx:A if P satisfiesA for some name fresh inP andIx:A. This quantifier
allows us to then derive a hidden name quantifier [11, 6].Ix:A is defined along the
lines of the freshness quantifier of Gabbay-Pitts [19]: the connections will be discussed.
A similarIx:A quantifier is studied in [11] (in absence of recursion), but is handled as
a meta-level construct, and not as a proper formula that can be mixed with recursion.� A logical operatornhmi allows us to assert that a messagem is present over
channeln, giving us some minimal power to observe the behavior of processes.� A “next step” temporal operator,�� A, allows us to talk about the behavior of a
process after a single (unspecified) reduction step.� Finally, a second-order quantifier8X:A enables us to quantify over the collection
of all properties. Combining8X:A with other operators of our logic, we then define a
maximal fixpoint operator�X:A (providedA is monotonic inX), and a dual minimal
fixpoint operator�X:A. From these recursive formulas, we can then define operators
for temporal and spatial modalities, for instance�A denoting thatA holds anytime in
the future, and✧A, meaning thatA holds everywhere in space.
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Related Work A logic for a process calculus including a tensor operator and a hid-
den name quantifier was developed in [6, 2], but a satisfactory semantic treatment
for the latter connective not was achieved before the contributions of [11] and of the
present paper. Initial versions of spatial logics for the Ambient Calculus were intro-
duced in [10], which also investigated connections with linear logic. We now target the
logic towards a more standard�-calculus.

Following the initial approach of Hennessy-Milner [22], modal logics for the�-
calculus have been proposed in [29, 16, 17]. The main difference between our logic
and these more standard logics of concurrency is the presence in our case of structural
operations: namely, of a tensor operator that corresponds to process composition, and
of a revelation operator that corresponds to name restriction. Usually, those other logics
require formulas to denote processes up to bisimulation, which is difficult to reconcile
with a tensor operator that can make distinctions between bisimilar processes (however,
such an operator was anticipated in [15]). In our case, we only require formulas to
denote processes up to structural equivalence, so that a tensor operator makes easy
sense. Sangiorgi has shown, for a closely related logic, that the equivalence induced by
the logic is then essentially structural equivalence [33].

The connections between name restriction and Gabbay-Pittsnotions of freshness [20,
19, 31], first studied in [11], are further explored in this paper.

The work on Bunched Logics [30] and Separation Logic [32] is closely related to
ours, at least in intent. Spatial logics for trees and graphshave also been investigated
in [9, 7, 8].

Organization of the paper We start with a concise review of the asynchronous�-
calculus. In Section 3 we give a detailed presentation of thesyntax of the spatial logic.
In Section 4, we introduce the central notion of property set, we define satisfaction,
and we proceed with the analysis of semantical aspects of thelogic. In Section 4.3 we
then study an appropriate notion of logical validity. In Sections 5 and 6 we motivate and
discuss fresh and hidden name quantification, and the recursive definition of properties.
In Section 7 we discuss in more detail the arguments that leadto our choices.

2 Preliminaries on the asynchronous�-calculus

We review the syntax and operational semantics of the asynchronous�-calculus [1, 24],
following the notations of [27]. We base our presentation of�-equivalence on the use
of transpositions (simple name replacements), which become prominent later in the
paper.

Definition 2.1 (Processes)Given a countable set� of names, the setP of processes
is given by the following abstract syntaxm;n; p 2 � (Names)P;Q;R ::=0 (Void)P jQ (Par)(�n)P (Restriction)mhni (Message)m(n):P (Input)!P (Replication)
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We write na(P ) for the set of all names that textually occur in a processP (either
bound or free).

Definition 2.2 (Free names in Processes)For any processP , the set offree namesofP , written fn(P ), is inductively defined as follows.

fn(0) , 0
fn(P jQ) , fn(P ) [ fn(Q)
fn(mhni) , fm;ng
fn((�n)P ) , fn(P ) n fng
fn(m(n):P ) , (fn(P ) n fng) [ fmg
fn(!P ) , fn(P )

In restriction(�n)P and inputm(n):P , the distinguished occurrence of the namen is
binding, with scope the processP . We writebn(P ) for the set of names which occur
bound in the processP , and cN for the setfP j N � fn(P )g of processes that
contain all names inN free. IfN is a finite set of names, andN 0 is a any set of names,
a substitution� : N ! N 0 of domainN andcodomainN 0 is a mapping assigning�(n) 2 N 0 to eachn 2 N , andn to eachn 62 N . Thus, outside its domain, any
substitution behaves like the identity. Given a substitution �, we denote byD(�) its
domain. Theimageof a substitution�, writtenI(�), is the setf�(n) j n 2 D(�)g. We
write fn mg for the singleton substitution of domainfng that assignsm to n.

Substitutions that just interchange a pair of names will play a special role in tech-
nical developments to follow. More precisely, thetranspositionof n andm, notedfn$mg, denotes the substitution� : fm;ng ! fm;ng such that�(n) = m and�(m) = n. Note thatfn$mg = fm$ng. Before defining safe substitution on pro-
cesses, we first introduce transposition, and then define�-congruence in the style of
[19].

Definition 2.3 (Transposition) Given a processP and a transposition� , we denote
by � �P the process inductively defined as follows.� �0 , 0� �mhni , �(m)h�(n)i� �(P jQ) , (� �P )j(� �Q) � �((�n)P ) , (��(n))� �P� �(p(n):P ) , �(p)(�(n)):(� �P )� �(!P ) , !� �P
Proposition 2.4 For all processesP andQ, and transpositions� ,

1. � �� �P = P
2. fm$ng�� �P = � �f�(m)$�(n)g�P

Proof. By induction on the structure ofP .

Definition 2.5 (Congruence)A binary relation�= on processes is acongruencewhen-
ever for all processesP ,Q andR,P �= P (Cong Refl)P �= Q) Q �= P (Cong Symm)P �= Q; Q �= R) P �= R (Cong Trans)P �= Q) P jR �= QjR (Cong Parl)P �= Q) RjP �= P jQ (Cong Parr)P �= Q) (�n)P �= (�n)Q (Cong Res)P �= Q) m(n):P �= m(n):Q (Cong In)P �= Q) !P �= !Q (Cong Repl)
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In this paper we essentially make use of two congruences:�-congruence and structural
congruence. As usual,�-congruence�� is the congruence that identifies processes up
to the safe renaming of bound names.

Definition 2.6 (�-congruence)�-congruence�� is the least congruence on processes
such that,(�n)P �� (�p)fn$pg�P wherep 62 na(P ) (Alpha Res)m(n):P �� m(p):fn$pg�P wherep 62 na(P ) (Alpha In)

Definition 2.7 (Safe substitution) For any processP and substitution� we denote by�(P ) the process inductively defined as follows:�(0) , 0�(mhni) , �(m)h�(n)i�(P jQ) , �(P )j�(Q)�((�n)P ) , (�p)�(Pfn$pg) wherep 62 D(�) [ I(�) [ fn(P )�(m(n):P ) , �(m)(p):�(Pfn$pg) wherep 62 D(�) [ I(�) [ fn(P )�(!P ) , !�(P )
The namep in the clauses for restriction and input is chosen fresh, hence safe substitu-
tion is well-defined mapping on�-equivalence classes of processes, as usual. We writeP� for �(P ) when� has the formfn mg or fn$mg. We have

Lemma 2.8 LetP be a process. Then

1. � �P �� �(P ) where� is any transposition

2. Pfn pg �� fn$pg�P wherep 62 fn(P )
Proof. By induction on the structure ofP .

From Lemma 2.8 the usual characterization of�-congruence follows:

Proposition 2.9 �-congruence is the least congruence on processes such that(�n)P �� (�p)Pfn pg wherep 62 fn(P )m(n):P �� m(p):Pfn pg wherep 62 fn(P )
As expected, safe substitution preserves�-congruence:

Proposition 2.10 If P �� Q then�(P ) �� �(Q).
Proof. Standard.

Definition 2.11 (Structural congruence) Structural congruence� is the least con-
gruence on processes such thatP �� Q) P � Q (Struct Alpha)P j0 � P (Struct Par Void)P jQ � QjP (Struct Par Comm)P j(QjR) � (P jQ)jR (Struct Par Assoc)n 62 fn(P )) P j(�n)Q � (�n)(P jQ) (Struct Res Par)n 6= p; n 6= m) (�n)p(m):P � p(m):(�n)P (Struct Res Inp)(�n)0 � 0 (Struct Res Void)(�n)(�m)P � (�m)(�n)P (Struct Res Comm)!0 � 0 (Struct Repl Void)!P � !P jP (Struct Repl Copy)!(P jQ) � !P j!Q (Struct Repl Par)!!P � !P (Struct Repl Repl)
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Although the axiom (Struct Res Inp) is absent from standard presentations of�-calculi,
the general consensus seems to be that such an axiom is quite sensible as a structural
congruence. (Struct Res Inp) is implicit in early work of Boudol on the chemical
abstract machine, and is harmless as far as extensional properties of processes (e.g.,
behavioral equivalence) are concerned. On the other hand, it has some convenient
consequences in the setting of a more intensional logic likeours. Moreover, Engelfriet
and Gelsema have shown the decidability of structural congruence in the presence of
the (Struct Repl Void/Par/Repl) and (Struct Res Inp) axioms[18].

Proposition 2.12 (Basic properties of�) For all processesP andQ,

1. If P � Q then fn(P ) = fn(Q).
2. If n 62 fn(P ) then(�n)P � P .

3. For all transpositions� , P � Q if and only if�(P ) � �(Q).
4. For all substitutions�, if P � Q, then�(P ) � �(Q).

Proof. Standard.

Proposition 2.13 (Inversion) For all processesP andQ,

1. If (�n)P � 0 thenP � 0.

2. If (�n)P � RjQ then there areR0 andQ0 such thatP � R0jQ0 and eitherR � (�n)R0 andQ � Q0 andn 62 fn(Q), or R � R0 andQ � (�n)Q0 andn 62 fn(R).
3. If (�n)P � (�m)Q then eitherP � fn$mg�Q or there areP 0 andQ0 such

thatP � (�m)P 0,Q � (�n)Q0 andP 0 � Q0.
Versions of Proposition 2.13(1–2) for the Ambient Calculushave been proved in [13]
and [12]. Proposition 2.13(3) has a simple proof based on results in [18], as suggested
by J. Engelfriet.

The dynamics of processes is captured by reduction:

Definition 2.14 (Reduction) Reduction is the least binary relation! on processes
inductively defined as follows.mhnijm(p):P ! Pfp ng (Red React)Q! Q0 ) P jQ! P jQ0 (Red Par)P ! Q) (�n)P ! (�n)Q (Red Res)P � P 0; P 0 ! Q0; Q0 � Q) P ! Q (Red Struct)

Proposition 2.15 (Basic properties of!) For all processesP andQ,

1. If P ! Q then fn(Q) � fn(P ).
2. For all substitutions�, if P ! Q, then�(P )! �(Q).
3. IfP ! Q andQ � (�n)Q0 for someQ0, then there isP 0 such thatP � (�n)P 0

andP 0 ! Q0.
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x; y; z 2 V (Name variables)X;Y; Z 2 X (Propositional variables)� 2 � [ V (Names or name variables)A;B;C ::=
F (False)A ^ B (Conjunction)A) B (Implication)0 (Void)AjB (Composition)A . B (Guarantee)�rA (Revelation)A�� (Hiding)�h�0i (Message)8x:A (First-order universal quantification)Ix:A (Fresh name quantification)�� A (Next step)X (Propositional variable)8X:A (Second-order universal quantification)

Figure 1: Formulas.

Proof. (1—2) Standard. (3) By induction on the derivation ofP ! Q (see Remark 2.16
below).

Remark 2.16 Proposition 2.15(3) is a consequence of Proposition 2.13(3) and does
not hold for versions of�-calculi where� does not satisfy (Struct Res Inp).E.g.,
considerP , phpijp(m):(�n)mhni: we haveP ! (�n)Q0 whereQ0 = phni. Now,
pick anyP 0 such thatP � (�n)P 0. Then, we can show that for allR such thatP 0 ! R we haveR � (�n)Q0 6� Q0. However, if we admit (Struct Res Inp), we haveP � (�n)(phpijp(m):mhni), so we can takeP 0 = phpijp(m):mhni.
Remark 2.17 Reduction as defined in Definition 2.14 is “almost the same” asthe usual
one in the following sense. Let� be the the standard structural congruence of [27]
restricted to the asynchronous�-calculus. Thus���. Likewise, let! be the stan-
dard reduction of the asynchronous�-calculus. It is clear that!�!. We also have
that for all processesP andQ, if P ! Q then there is a processR such thatP ! R
andQ � R.

3 Syntax of the Spatial Logic

Basic constructs of our spatial logic include propositional, spatial, and temporal opera-
tors, first-order and second-order quantifications, and freshness quantification (cf. [19]).
As shown later, from this basic set of connectives we can define a quite expressive set
of properties, including fixpoint combinators (supportinginductive and coinductive
definition of properties) and an internal satisfiability modality [10].
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Definition 3.1 (Formulas) Given an infinite setV of name variables, and an infinite
setX of propositional variables (mutually disjoint from�), formulas are defined as
shown in Fig. 1.

The meaning of these formulas was briefly discussed in the introduction; their seman-
tics is given later in Definition 4.17. We highlight here someof the more unusual op-
erators. The formula0 is satisfied by any process in the structural congruence class of0. The formulaAjB is satisfied by any process that can be decomposed into processes
that satisfy respectivelyA andB. Guarantee is the logical adjunct of composition:A . B is satisfied by those processes whose composition with any process satisfyingA results in a process satisfyingB. The formulanrA is satisfied by all processes
congruent with some process(�n)P , whereP satisfiesA. The formulaA�n is sat-
isfied by any processP such that(�n)P satisfiesA; i.e., by a process that satisfiesA after hidingn. Messagemhni holds of processes structurally congruent to a mes-
sagemhni. The formulaIx:A denotes fresh name quantification; a process satisfiesIx:A if for (some/all) fresh namesn (fresh in the process and in the formula), it satis-
fiesAfx ng. This quantifier exhibits the universal/existential ambivalence typical of
freshness: a property holding of some fresh names should also hold of any other fresh
name. As we shall see, combining the fresh name quantifier with revelation will enable
us to define a hidden name quantifier, that is a quantifier over names that are locally
restricted in the process at hand.

In formulas of the form8x:A,Ix:A, and8X:A the distinguished occurrences ofx
andX are binding, with scope the formulaA. We define on formulas the relation��
of �-congruence in the standard way, that is, as the least congruence identifying formu-
las modulo safe renaming of bound (name and propositional) variables. We consider
formulas always modulo�-congruence.

Definition 3.2 (Free names and variables in formulas)For any formulaC, we in-
troduce the following sets, inductively defined in Fig. 2.

fn(C) free names inC
fv(C) free name variables inC
fpv(C) free propositional variables inC

By fnv(A) we mean the setfv(A) [ fn(A). A formula isname-closedif it has no free
name variables, andclosedif it has no free variables whatsoever.

We extend the previously given notion of substitution to name variables and for-
mulas as follows. WhenS is a finite set of either variables and names, andN is a set
of names,� : S ! N means that� is a substitution assigning a name inN to each
variable or name inS. If � : S ! N is a substitution then��x denotes the substitution
of domainS n fxg and codomainN defined by��x(y) = �(y), for all y 2 S n fxg.
Definition 3.3 (Safe substitution) For any formulaA and substitution� we denote by�(A) the formula inductively defined as follows.�(F) , F�(0) , 0�(A ^B) , �(A) ^ �(B)�(A) B) , �(A) ) �(B)�(AjB) , �(A)j�(B)�(A . B) , �(A) . �(B)�(�h�0i) , �(�)h�(�0)i

�(�rA) , �(�)r�(A)�(A��) , �(A)��(�)�(Ix:A) , Ix:��x(A)�(8x:A) , 8x:��x(A)�(�� A) , �� �(A)�(X) , X�(8X:A) , 8X:�(A)
8



C fn(C) fv(C) fpv(C)
F0 ; ; ;A ^ BA)BAjBA . B fn(A) [ fn(B) fv(A) [ fv(B) fpv(A) [ fpv(B)�h�0i f�; �0g \ � f�; �0g \ V ;�rAA�� fn(A) [ (f�g \ �) fv(A) [ (f�g \ V) fpv(A)8x:AIx:A fn(A) fv(A) n fxg fpv(A)�� A fn(A) fv(A) fpv(A)X ; ; fXg8X:A fn(A) fv(A) fpv(A) n fXg

Figure 2: Free names in formulas.

WhenA andB are formulas, we denote byAfX Bg the capture avoiding substitu-
tion of all free occurrences ofX in A by B, defined in the expected way. ByF [�℄
we denote a formula context with possibly multiple occurrences of the hole�. Then,
wheneverA is a formula, we denote byF [A℄ the formula obtained by textually replac-
ing every occurrence of the hole� in the contextF [�℄ by A. Note that free (name
or propositional) variables inA will be captured by binders present inF [�℄; cf., the
standard notion of context substitution.

4 Semantics

The semantics of formulas is defined by assigning to each formulaA a set of processesJAK, namely the set of all processes that satisfy the property denoted by formulaA.
However not any set of processes can denote a property in a proper way. For in-

stance, it is sensible to requireJAK to be closed under structural congruence. That is,
if a processP satisfies some propertyA, then any processQ such thatQ � P must
also satisfyA. We also want to be able to express freshness of names with relation
to JAK. Suppose we haveP 2 JAK, n 62 fn(A) but n 2 fn(P ). Sincen 62 fn(A),
the free occurrences ofn in P arefreshfor the formulaA. Now, the particular choice
of the namen should not depend onA itself, since it is natural to consider that all
fresh names forA are to be treated uniformly. Therefore, it is natural to require
that alsoPfn mg 2 JAK, wherem is any other fresh name forA andP , that ism 62 fn(P ) [ fn(A).

Hence, we say that a set of processes� is supportedby the set of namesN if, for
all m;n not in the supportN , if P belongs to� thenPfn$mg is also in�. We then
take as properties only those sets of processes that have a finite support. Intuitively, the
support of a property is the semantic counterpart of the set of free names of a formula;
the least support of the denotation of a formula is included in the set of free names of
the formula. Sets with infinite support could only correspond to formulas that have an
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infinite set of free names, and are therefore excluded.
Moreover, the notion of finite support seems crucial for the semantics of the fresh

name quantifier,Ix:A, and consequently for the semantics of the derived hidden name
quantifierHx:A. The semantics of the spatial logics of [11, 10, 6] is given interms
of sets of processes that are closed only under structural congruence, but if we try to
extend that semantics to recursive formulas, we run into a problem: Ix:A is not a
monotonic operator, and could not be used together with recursion. This discussion is
continued in more detail in Section 6.

4.1 Property Sets

The above observations motivate the following notion ofproperty set. A property set
is a set of processes closed under structural congruence andfinitely supported.

Definition 4.1 (Property Set) A property set(Pset) is a set of processes	 such that

1. (Closure under�) For all Q, if P 2 	 andP � Q thenQ 2 	.

2. (Finite support) There is a finite set of namesN such that, for alln;m 62 N , ifP 2 	 thenfn$mg�P 2 	.

Definition 4.2 (Collections of Property Sets)

1. PN is the set of all Psets supported by the finite set of namesN .

2. P� is the set of all Psets.

The finite setN mentioned in Definition 4.1(2) is referred to as asupportof the Pset.
We use	 and� to range over property sets. A supportN plays for a Pset a role
similar to (a bound on) the set of free names of a formula, and enables the definition of
a notion of name freshness with respect to a possibly infiniteset of processes. We use
the notationS� to denote the closure under structural congruence of an arbitrary set of
processesS.

Lemma 4.3 (Operations on Psets)For all finiteN � �,

1. IfN � N 0 thenPN � PN 0 .
2. (Bottom and Top); 2 PN andP 2 PN .

3. (Meet and Join) IfS � PN then
TS 2 PN and

SS 2 PN .

4. (Inverse) If	 2 PN then	 = P n	 2 PN .

Proof. See appendix.

We can also extend the application of transpositions (not ofarbitrary substitutions!)
to Psets as follows: if� is a transposition and	 is a Pset, define�(	) , f�(P ) j P 2	g.

Note that Lemma 4.3(2-4) implies

Proposition 4.4 (Lattice) For all finiteN � �, we have

1. hPN ;�;[;\i is a complete lattice.

2. hPN ;[;\; � i is a Boolean algebra.
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Remark 4.5 Note thatP� is neither closed under arbitrary unions nor closed under
arbitrary intersections. For instance, lethm1;m2; : : : i be a linear ordering of�, letP0 , 0 and for anyi > 0, Pi , mi(n):Pi�1. ThenfPig� is finitely supported (with
supportfm1; : : : ;mig) for any i � 0, but

Si�0fPig� is not. Thus the collection of
all PsetsP� is not a complete lattice.

However, we can recover closure under all basic set-theoretic operations, by restricting
to a cumulative hierarchy of finitely supported sets [19].

Definition 4.6 For any finite set of namesN , a collectionS of Psets is finitely sup-
ported byN if for all m;n 62 N and� 2 S we havefm$ng(�) 2 S.

Definition 4.7 P2N is the set of all collections of Psets supported by the finite set of
namesN .

Lemma 4.8 If S 2 P2N then
SS 2 PN and

TS 2 PN .

Proof. If P 2 SS thenP 2 � for some� 2 S � SS. If Q � P thenQ 2 � 2 S �SS. Let � = fm$ng with m;n 62 N . Since�(�) 2 S, we also have�(P ) 2 SS.
The case for

TS is similar.

Definition 4.9 (Tensor and Unit) For everyPN , define operations
 : PN � PN ! PN 1 : PN
by letting, for all	;� 2 PN	
 � , fP j ExistsQ;R. P � QjR andQ 2 	 andR 2 �g1 , fP j P � 0g
In [10] it is shown that the set of all�-closed subsets ofP gives rise to a commutative
quantale. The same result still holds for domains of Psets.

Proposition 4.10 (Quantale)For all finiteN � �, hPN ;�;S;
;1i is a commutative
quantale, that is:

1. hPN ;�;Si is a complete join semilattice.

2. hPN ;
;1i is a commutative monoid.

3. �
SS = Sf�
	 j 	 2 Sg, for all � 2 PN andS � PN .

Proof. See appendix.

Lemma 4.11 (Transposing Psets)We have

1. For any processP and Pset	, P 2 �(	) if and only if�(P ) 2 	.

2. 	 2 PN if and only if�(	) 2 P�(N).
3. Ifm;n 62 N and	 2 PN thenfm$ng(	) = 	.

Proof. See appendix.
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Definition 4.12 (Support) Let N be a set of names. A Pset	 is supportedby N
whenever every permutation that fixesN also fixes	. Moreover	 is finitely supported
byN if supported byN andN is finite.

We also have

Proposition 4.13 (Least Support)Let� 2 PN . Then

1. There is a least set of names supp(�) such that� 2 Psupp(�).
2. For any transposition� , supp(�(�)) = �(supp(�)).

Proof. See appendix.

Intuitively, the set of namessupp(�) represents the set of “free names” of the Pset� (in the sense of Lemma 4.11(3)), hencesupp(�) is the semantic counterpart of the
setfn(�) of free names of a formula.

Remark 4.14 We can verify that a Pset	 supported byN is finitely supported byN
in the precise sense of [19]:

A name permutation� over� is an injective name substitution such thatD(�) =I(�). Let S� be the group of all name permutations; recall that any permutation can
be expressed as a composition of transpositions. For any Pset 	, �(	) 2 P�, by
Lemma 4.11(2). HenceP� is anS��set.

Now, let	 2 PN . Pick any� 2 S� and assume that� is not the identity permu-
tation. This implies that there is some permutation�0, such that�0(m) = �(m) for allm 2 � and�0(m) 6= m, for all m 2 D(�0). Assume that for alln 2 N , �(n) = n.
Then, for alln 2 N , �0(n) = n. We can see thatN is disjoint fromD(�0) = I(�0).
Hence,�0 can be written as a composition of transpositions�1 � � � �k such that�i =fpi$qig andpi; qi 62 N , for all i = 1; � � � ; k. Therefore�0(	) = �(	) = 	. This
means thatN (finitely) supports	. We conclude thatP� is a perm(�)-set with the
finite support property.

4.2 Satisfaction

We define the denotation of a formulaA by a PsetJAK 2 Pfn(A). However, sinceA
may contain free occurrences of propositional variables, its denotation depends on the
denotation of such variables, which is given by a valuation.

Definition 4.15 (Valuation) A valuationv is a mapping from a finite subset ofX (the
propositional variables), assigning to each propositional variable X in its domainD(v) a Pset	. Given a formulaA, a valuation forA is any valuationv such that
fpv(A) � D(v).
Thus, the role of valuations is to interpret free propositional variables occurring in
the formulaA. Whenv is a valuation, we writev[X 	℄ to denote the valuation of
domainD(v) [ fXg that assigns	 to the propositional variableX , andv(Z) to any
other propositional variableZ 6= X . For any valuationv, we let

fn(v) ,[fsupp(v(X)) j X 2 D(v)g
Taking into account the extra information yielded by a valuation, we now give a refined
characterization of the free names of a formulaA as follows
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JFKv , ;JA ^ BKv , JAKv \ JBKvJA) BKv , fP j if P 2 JAKv thenP 2 JBKvgJ0Kv , 1JAjBKv , JAKv 
 JBKvJA . BKv , fP j Forall Q: if Q 2 JAKv thenP jQ 2 JBKvgJnrAKv , fP j ExistsQ: P � (�n)Q andQ 2 JAKvgJA�nKv , fP j (�n)P 2 JAKvgJmhniKv , fP j P � mhnigJ8x:AKv , Tn2�JAfx ngKvJIx:AKv , Sn62fnv(A)(JAfx ngKv n fP j n 2 fn(P )g)J�� AKv , fP j ExistsQ: P ! Q andQ 2 JAKvgJXKv , v(X)J8X:AKv , T	2P�JAKv[X 	℄
Figure 3: Denotation of formulas.

Definition 4.16 (Free names under a valuation)If A is a formula andv a valuation
for A, we define the setfnv(A) of free names ofA underv byfnv(A) , fn(A) [[fsupp(v(X)) j X 2 fpv(A)g
The setfnv(A) is used in an essential way in the definition of the semantics of the fresh
name quantifier, where the quantification witness is tested for freshness with respect to
the property set denoted by the formulaA, where the formulaA may contain free
occurrences of propositional variables.

Definition 4.17 (Denotation and Satisfaction)Thedenotation mapJ�Kv, inductively
defined in Fig. 3, is the function that assigns a set of processesJAKv to each name-
closed formulaA and valuation (forA) v. We writeP j=v A wheneverP 2 JAKv : this
means thatP satisfiesformulaA under valuationv.

The boolean connectives (F,^ and)) are interpreted as expected, while the spatial
operations related to composition (0, j) are interpreted in terms of the quantale opera-
tions in Definition 4.9. Then. is given the expected semantics for the adjunct operator
of the tensor. The spatial operations related to name hiding(revelation and hiding) are
defined along similar lines.

In the semantics of name quantification the quantified name variable is ranged over
the set� of all names.

The semantics given to the freshness quantifier is such that aprocessP satisfiesJIx:AKv if and only ifP satisfiesJAfx ngKv for some namen fresh inA andP : this
is the reason for subtractingfP j n 2 fn(P )g, as further discussed in Section 5. Since
in generalA may contain free occurrences of propositional variables, freshness with
relation to formulaA must be defined in terms offnv(A), as already mentioned; this
is justified in more detail in Section 5.2, where alternativedefinitions for the semantics
of Ix:A are also discussed.

The denotation of second order quantification is also definedas expected, except
that the quantified propositional variable ranges over all property sets (rather than all
sets of processes).
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We now show that the denotation map is well-defined. Since we are considering
formulas up to�-congruence, we start by verifying that the denotation map is well-
defined on the corresponding equivalence classes.

Lemma 4.18 For all formulasA;B and valuationsv for A andB, if A �� B, thenJAKv = JBKv .

Proof. Induction on the structure ofA.

Note that assignments to propositional variables that do not occur free in the in-
terpreted formula do not affect its denotation. Therefore,valuations can always be
weakened and thinned whenever appropriate.

Remark 4.19 For any formulaA, Pset� and valuationv for A, if X 62 fpv(A) thenJAKv = JAKv[X �℄.
We now extend the application of transpositions to valuations, this is done in the ex-
pected way: whenv is a valuation, let�(v) be the valuation with same domain asv and
defined by�(v)(X) , �(v(X)), for allX 2 D(v).
Lemma 4.20 For any formulaA, valuationv and transposition� , if � = fm$ng andm;n 62 fn(v) thenJAKv = JAK�(v).
Proof. For anyX 2 D(v) we havem;n 62 supp(v(X)) andv(X) 2 Psupp(v(X)).
Thus�(supp(X)) = supp(X) by Lemma 4.11(3). Hence�(v) = v.

Fundamental properties of the denotation mapping are stated in the following main
theorem, from which all correctness properties of the semantics follow.

Theorem 4.21 For all formulasA and appropriate valuationsv
1. JAKv 2 Pfnv(A).
2. For all transpositions� , �(JAKv) = J�(A)K�(v).

Proof. See Appendix.

The property expressed in Theorem 4.21(2) corresponds to the equivarianceprop-
erty of [19], and essentially means that the denotation of a formula depends on the
distinctions between the names that occur on it, rather thanon the particular identities
of such names.

Lemma 4.22 For any formulaA and valuationv for A we have

supp(JAKv) � fnv(A)
Proof. By Theorem 4.21(1)JAKv 2 Pfnv(A); hence by Proposition 4.13 there is a least
setN = supp(JAKv) such thatJAKv 2 PN . Sosupp(JAKv) � fnv(A).
Remark 4.23 By inspection of the proof of Theorem 4.21 we can verify� AssumeJAKv 2 PN andJBKv 2 PM . ThenJFKv 2 P;J0Kv 2 P;JphqiKv 2 Pfp;qgJA ^ BKv 2 PN[M JA) BKv 2 PN[MJAjBKv 2 PN[MJA . BKv 2 PN[MJnrAKv 2 PN[fng JA�nKv 2 PN[fngJ�� AKv 2 PNJXKv 2 Psupp(v(X))

14



� If JAfx ngKv 2 PN[fng for all n 2 �, thenJ8x:AKv 2 PN� If JAfx ngKv 2 PN[fng for all n 62 fnv(A), thenJIx:AKv 2 PN� If fJAKv[X 	℄ j 	 2 P�g 2 P2N thenJ8X:AKv 2 PN
Lemma 4.24 LetA be any formula,v[X 	℄ a valuation forA andB, andB any
formula in whichX does not occur free. ThenJAfX BgKv = JAKv[X JBKv℄
Proof. Induction on the structure of formulaA.

Another consequence of the closure property stated in Theorem 4.21(2) is that the
relation of satisfaction between processes and formulas isclosed under fresh name
renaming.

Lemma 4.25 (Fresh renaming)LetP be a process andA a closed formula such thatP j= A. If m 62 fn(A) [ fn(P ) thenPfn mg j= Afn mg.
Proof. Sincem 62 fn(P ) [ fn(A), by Lemma 2.8(2) we havePfn mg � Pfn$mg,
andAfn mg = Afn$mg. We conclude by Theorem 4.21(2).

It should be stressed that the use of transpositions, as suggested to us by A. Pitts,
together with the notion of support, yields for Lemma 4.25 a proof that is much simpler
than direct ones (e.g., [2, 10]). Further motivation and alternatives for the present
semantics will be discussed in the next sections.

4.2.1 Basic Derived Connectives

Some derived connectives of basic interest are defined as shown next.:A , A) F (Negation)
T , :F (True)A _ B , (:A) ) B (Disjunction)AkB , :(:Aj:B) (Decomposition)9x:A , :8x::A (Existential quantification)9X:A , :8X::A (Second order existential quantification)�A , A . F (Unsatisfiability)!A , �:A (Validity)
c� , :�rT (Free name)�#�0 , c� . ( c���0) (Inequality)� = �0 , :(�#�0) (Equality)�A , :�� :A (All next)

Standard operations of the classical predicate calculus, namely:A (Negation),9x:A
(Existential quantification),A _B (Disjunction) andT (True) are defined as expected.
Another interesting connective isAkB, the DeMorgan dual of compositionAjB, which
supports the definition of a form of spatial quantification. Aprocess satisfiesAkB if
and only if every component ofP with respect to composition, satisfies eitherA orB.
A processP satisfies�A if there does not exists any processQ that satisfiesA. HenceA is valid if some process satisfies!A [10]. A process satisfiesc� if the name denoted
by � is free in it [11]. Then, any process satisfies�#�0 if, in presence of a process
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containing� free, if we hide�0 we still have a process that contains� free: this can
only hold true if�0 and�0 denote distinct names. We also have the modality�, which
is the dual of�� : a process satisfies�A if and only if all processes to which it reduces
in one step satisfyA.

Proposition 4.26 For every processP and namesn; p we have

1. P 2 J cnKv if and only ifn 2 fn(P ).
2. P 2 Jn = pKv if and only ifn = p.

Proof. 1. See [11]. 2. We verify thatP 2 J cn . ( cn�p)Kv if and only if n 6= p.
SupposeP 2 J cn . ( cn�p)Kv . Then, for everyQ such thatn 2 fn(Q) we haveQjP 2 J cn�pKv . This impliesn 2 fn((�p)(QjP )), and thusn 6= p. Conversely, ifn 6= p andn 2 fn(Q) thenn 2 fn((�p)(QjP )) andn 2 fn(QjP ), for all P . Thus, for
everyQ such thatn 2 fn(Q), we haveQjP 2 J cn�pKv for all P .

4.3 Validity

We now introduce a notion of logical validity. A formulaA is valid if all of its ground
instances, under all valuations, are satisfied by all processes.

Definition 4.27 (Valid Formula) A formulaA is valid if for all substitutions� with
fv(A) � D(�), and for all valuationsv such that fpv(A) � D(v), we haveJ�(A)Kv =P .

We use the meta-level statementvalid(A) to assert validity of formulaA. Logical
validity satisfies the following general principles.

Proposition 4.28 (Instantiation) LetF [�℄ be any formula context. We have

1. For any� and formulaA, valid(A)) valid(Afx �g).
2. For any formulaA, valid(F [X ℄)) valid(F [A℄)

Proof. 1. Assumevalid(A). Then for all substitutions� wherefv(A) � D(�), for
all valuationsv such thatfpv(A) � D(v), we haveP = J�(A)Kv . Let �0 be any
substitution withfv(Afx �g) � D(�0) and define� = �0�x Æ fx �0(�)g. Now,
fv(A) � D(�). ThusP = J�(A)Kv for any appropriate valuationv. Since�(A) =�0(Afx �g), we are done.

2. Similar to proof of Lemma 4.29 (induction in the size ofF [�℄).
Lemma 4.29 (Substitutivity) LetJ�(A)Kv = J�(B)Kv for all substitutions� and valu-
ationsv, and letF [�℄ be a formula context. Then, for all substitutions� and valuationsw we haveJ�(F [A℄)Kw = J�(F [B℄)Kw .

Proof. See appendix.

A direct consequence of substitutivity is

Proposition 4.30 (Replacement of equivalents)LetF [�℄ be any formula context. We
have valid(A, B)) valid(F [A℄, F [B℄).
Proof. Assumevalid(A , B). ThenJ�(A)Kv = J�(B)Kv for any valuationv forA , B and substitution�. Letw be any valuation forF [A℄ , F [B℄; we must show
thatJ�(F [A℄)Kw = J�(F [B℄)Kw , for any substitution�. But this follows directly from
Lemma 4.29.
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5 Fresh and Hidden Name Quantification

In this section the semantics of Section 4 is used to investigate basic properties of the
fresh name quantifier and of the derived hidden name quantifier.

5.1 The Fresh Name Quantifier

As we have seen, freshness plays a central role in the spatiallogic, but uses of the
freshness quantifierIx:A can be rather subtle. Consider, as an example, the formulaIx:xhmi, satisfied by any processP such that, for anyn fresh inP and different fromm, P satisfiesnhmi. But if P satisfiesnhmi, it must be congruent tonhmi, and hence
it must containn. Therefore,n is not fresh inP , a contradiction. In fact, the denotation
of Ix:xhmi is empty. This shows that many simple uses ofI are vacuous, when the
fresh name maps directly to a free name of the process.

There are, however, two basic ways of making good use of the fresh quantifier. The
first way is to useI in conjunction withr, so that the fresh name is used to reveal a
restricted name of the process (then the fresh name does not map to a free name of the
original process). In this situation, we definitely do not want the name used to reveal
a restricted name to clash with some other name of the process. This is one of the
reasons that motivates the use ofnfP j n 2 fn(P )g in the semantics ofIx:A (Fig. 3),
to eliminate such a possibility. The combination ofI andr is discussed further in
Section 5.3.

The second way is to useI in conjunction with., so that the fresh name maps to a
free name of the context, but not of the process. For example,consider the formulaIx:8y:(xhyi .�(xhyijT))
This formula holds of all processesP that verify the following: if a message on a fresh
channelx is composed in parallel withP , then no reduction from the resulting process
consumes such a message.

Intuitively, we expect such a property to hold of every process. In fact, letP be any
process,n some name not free inP , andm any name. Pick any processQ such thatQ j=v nhmi. So,Q � nhmi. Now, we verify that ifQjP ! R, thenR � nhmijP 0,
whereP ! P 0, becauseP 6� n(q):R0jR00. ThusP j=v nhmi .�(nhmijT). Sincem
is arbitrary,P j=v 8y:nhyi . �(nhyijT). Sincen is neither free inP nor belongs tofnv(8y:xhyi .�(xhyijT)), we concludeP j=v Ix:8y:xhyi .�(xhyijT).

A fundamental consequence of closure of satisfaction underfresh renaming (Lemma
4.25) is the following characterisation of fresh name quantification, that makes clear the
universal/existential ambivalence of freshness: if some property holds of a fresh name,
it holds of all fresh names.

Proposition 5.1 (Gabbay-Pitts Property) LetIx:A be a name-closed formula,P a
process, andv a valuation forIx:A. Then, the following statements are equivalent

1. P j=v Ix:A.

2. There isn 62 fn(P ) [ fnv(A) such thatP j=v Afx ng.
3. For all n 62 fn(P ) [ fnv(A) we haveP j=v Afx ng.

Proof. (1 ) 2) By definition. (2 ) 3) By Remark 4.19, there isn such thatn 62 fn(P ) [ fnvA(A) andP j=vA Afx ng, wherevA is the restriction ofv to
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the free propositional variables ofA. Now, pick m 62 fn(P ) [ fnvA(A), and let� = fm$ng. By Theorem 4.21(2), we conclude�(P ) j=�(vA) �(Afx ng), that
is, P j=�(vA) Afx mg. Note thatm;n 62 fn(vA); henceP j=vA Afx mg, by
Lemma 4.20(1). HenceP j=v Afx mg, by Remark 4.19. (3) 1) Immediate.

A corollary of the previous proposition is

Proposition 5.2 LetA be a name-closed formula andv a valuation forA andB. We
have

1. J8x:AKv � JIx:AKv � J9x:AKv
2. JIx:(A ) B)Kv = JIx:A) Ix:BKv

Proof. 2. (Left to right) AssumeP 2 JIx:(A ) B)Kv andP 2 JIx:AKv . ThenP 2 JAfx ngKv for somen 62 fn(P )[fnv(A), andP 2 JAfx mg ) Bfx mgKv
for somem 62 fn(P )[ fnv(A) B). By Proposition 5.1(3), for alln 62 fn(P )[ fnv(A)
we haveP 2 JAfx ngKv. In particular,P 2 JAfx mgKv, thusP 2 JBfx mgKv .
We concludeP 2 JIx:BKv . (Right to left) AssumeP 2 JIx:A ) Ix:BKv . Pickm 62 fn(P ) [ fnv(A ) B) and assumeP 2 JAfx mgKv. ThenP 2 JIx:AKv ,
this impliesP 2 JIx:BKv . By Proposition 5.1(3),P 2 JBfx mgKv. HenceP 2JIx:(A) B)Kv .

Fresh quantification distributes over all boolean connectives, not only implication
(cf., Proposition 5.2(2), it suffices to note that (trivially)JIx:FKv = JFKv). In the next
lemma, we list some other distribution properties of freshness quantification.

Lemma 5.3 (Distribution properties ofI) We have

1. JIx:(AjB)Kv = JIx:AjIx:BKv 2. JIx:(A . B)Kv � JIx:A .Ix:BKv
3. JIx:�� AKv = J�� Ix:AKv 4. JIx:nrAKv = JnrIx:AKv
5. JIx:8y:AKv � J8y:Ix:AKv 6. JIx:8X:AKv � J8X:Ix:AKv

Proof. See Appendix.

It is not hard to see that properties 5. and 6. above are not strict equalities: for a
counterexample to8y:Ix:A � Ix:8y:A consider,e.g.,A , x#y.

5.2 Discussion

In [19] aI-quantifier is defined, such thatIx:A, fn j Afx ngg is cofinite

There is a quite close connection between thisI-quantifier and ours, superficial differ-
ences being related to the fact that we are working in a modal logic. In our case, we
have

Proposition 5.4 P j=v Ix:A if and only iffn j P j=v Afx ngg is cofinite.

Proof. (Left to right) PickP j=v Ix:A. Thus there isn 62 fnv(A) [ fv(P ) such
that P j=v Afx ng. By Gabbay-Pitts (Proposition 5.1(3)) we have that for alln
if n 62 fnv(A) [ fv(P ) thenP j=v Afx ng. Hencefn j P j=v Afx ngg is
cofinite. (Right to left) AssumeS = fn j P j=v Afx ngg is cofinite. Then, there
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is a finite setM(= � n S) such that for alln, if n 62 M thenP j=v Afx ng. Pickm 62 fnv(A) [ fn(P ) [M . ThenP j=v Afx mg, henceP j=v Ix:A.

Now, let us define the following (meta-level) quantifierI�x:B , fn 2 � j Bfx ngg is cofinite

whereB is a meta-level statement of the (informal) theory of Psets of Section 4. Note
thatI�x:B is defined exactly as theI-quantifier of Gabbay-Pitts. Then, we can read
the statement of the previous proposition as:P 2 JIx:AKv if and only ifI�n:(P 2 JAfx ngKv)

It is interesting to discuss alternative freshness quantifiers. Our semantics ofIx:A
is such thatP j=v Ix:A holds if and only if there is a namen, fresh both inA andP ,
such thatP j= Afx ng (cf., Proposition 5.1). It is natural then to ask what happens ifn only is required to be fresh inA. Let us define for this propose a different quantifier
Fx:A whereP 2 JFx:AK if and only if 9n 62 fn(A) such thatP 2 JAfx ngK
One could then attempt to defineIx:A asFx:(A^: cx). AlthoughJFx:AK is a Pset,
the main problems withFx:A, with respect toIx:A, are a failure of monotonicity
(Proposition 6.5), a failure of the substitutivity property (Lemma 4.29), and a failure of
the Gabbay-Pitts property (Proposition 5.1) relating to a proper notion of “freshness”.

For substitutivity, we have thatJnhni _ :nhniK = JTK. So, we would expect
thatJFx:((nhni _ :nhni)^ xhxi)K = JFx:(T ^ xhxi)K. Butnhni 2 JFx:(T ^ xhxi)K,
whilenhni 62 JFx:((nhni_:nhni)^xhxi)K. So,Fx:A is not a proper “compositional”
logical operator. While, rather amazingly,Ix:A is.

For monotonicity, consider = fqhqig� � fphpi; qhqig� = �
Note that ; � 2 Pfp;qg, fnv[X  ℄(Xjxhxi) = fqg andfnv[X �℄(Xjxhxi) = fp; qg.
On the one hand,qhqijphpi 2 JFx:XjxhxiKv[X  ℄, because there isn 62 fqg (namelyp) such thatqhqijphpi 2 JXjnhniKv[X  ℄. On the other hand, we haveqhqijphpi 62JFx:(Xjxhxi)Kv[X �℄, because there is non out of fp; qg such thatqhqijphpi 2JXjnhniKv[X �℄. SoJFx:(Xjxhxi)Kv[X  ℄ 6� JFx:(Xjxhxi)Kv[X �℄. We conclude
thatFx:A cannot be used with recursive formulas.

For the Gabbay-Pitts property, consider whetherphpi 2 JFx::xhxiK. This means,
by definition: there is a namen such thatphpi 2 J:nhniK. This is true, take anyn 6= p. If we had a Gabbay-Pitts property forFx:A we would obtain that for all namesn, phpi 2 JnhniK. But this is false: taken = p. So, by the interpretation of the
Gabbay-Pitts property, the candidateFx:A is not a proper “freshness” quantifier.

5.3 The Hidden Name Quantifier

When combined with revelation, the fresh name quantifier gives rise to a natural oper-
ation of quantification over hidden (restricted) names in a process. Intuitively, a hidden
name is revealed under a fresh identity, and then a property is asserted of the process
where the name is hidden.

Hx:A , Ix:xrA
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A formula Hx:A reads “there is a restricted namex such thatA holds for the process
under the restriction”. From the above definition, we get thefollowing direct semantic
characterization of the name-closed formulaHx:AJHx:AKv = fQ j Q � (�n)P andn 62 fn(Q) [ fnv(A) andP 2 JAfx ngKvg

The hidden name quantifier makes it possible to express properties of processes
that depend on (or need to mention) some secret name. For a quite simple example,
consider the closed formula 9y:Hx:(yhxijT)
We can verify that a process satisfies this formula if there issome namen such thatP satisfies the formulaHx:(nhxijT). But this means that there is some namem,
fresh with respect toP andHx:(nhxijT), such thatP � (�n)Q andQ � nhmijR
for someQ andR. In summary,P satisfies9y:Hx:(yhxijT) if and only if P �(�m)(nhmijR) for somem andn 6= m (hencen is public). We conclude that the
formula9y:Hx:(yhxijT) is satisfied by those processes that are ready to send asecret
name over apublicchannel.

As a further example, letAfxg be some formula with a free occurrence of the name
variablex, and consider

Keeps(Afxg) , Hx:Afxg ^ (T . �� Hx:AfxgjT)
A process that satisfiesKeeps(Afxg) is always able to guarantee, until the next step,
persistence of propertyA with respect to some secretx it owns, even when attacked by
some other arbitrary process. LetQ be the process(�m)(mhnij!a(p):m(q):mhpi)
We havefn(Q) = fa; ng. Now defineMsg(x; y) , (xhyijT). We can verify thatQ
satisfiesKeeps(9y:Msg(x; y)).

As a further example, consider the formula

NoRes, :Hx: cx
A processP satisfiesNoResif and only if it is not the case that there is a processQ and
a namen such thatP � (�n)Q andn 2 fn(Q). In other words,P satisfiesNoResif
and only if for all processesQ and namesn such thatP � (�n)Q we haven 62 fn(Q).
Intuitively, this means thatP has no “genuine” restricted hidden name at the outermost
level, because ifP � (�n)Q for someQ andn, thenP � Q (n 62 fn(Q) implies(�n)Q � Q). So, we will callrestriction-freeany process that satisfiesNoRes. For
instancenhmi satisfiesNoRes, and so does(�n)mhmi if m 6= n, but (�n)nhni does
not.

Lemma 5.5 (Some properties ofH) We have

1. JHx:(A ^ : cx)Kv = JIx:AKv
2. If x 62 fn(B) thenJHx:(Aj(B ^ : cx))Kv = J(Hx:A)jBKv
3. JHx:AjIx:BKv � JHx:(AjB)Kv
4. JHx:�� AKv = J�� Hx:AKv
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Proof. 1. (Left to right inclusion) Pick some processP 2 JHx:(A ^ : cx)Kv . By
the characterization given above, this means thatP � (�n)Q for someQ andn such
thatn 62 fn(P ) [ fnv(A) andQ 2 JAfx ng ^ cnKv . But then,n 62 fn(Q) andQ 2 JAfx ngKv. We concludeP � (�n)Q � Q, by Proposition 2.12(2). Therefore,P 2 JIx:AKv . In the other direction the proof is similar.

2. (Left to right inclusion) LetP 2 JHx:(Aj(B^: cx))Kv . ThenP � (�n)(QjR),
heren 62 fn(P ) [ fnv(Hx:(Aj(B ^ : cx))), Q j=v A, R j=v B andn 62 fn(R). ThenP � (�n)QjR, and we concludeP j=v Hx:AjB. The converse inclusion is also
immediate, using Proposition 5.1.

3. (Left to right inclusion) LetP 2 JHx:AjIx:BKv . ThenP � QjR where for
all n 62 fn(Q) [ fnv(A) there isQ0 such thatQ � (�n)Q0 andQ0 j=v Afx ng, andR j= Bfx pg for all p 62 fn(R) [ fnv(B), by Proposition 5.1. Pickm 62 fn(Q) [fnv(A) [ fnv(B) [ fn(R). HenceR j=v Bfx mg. Moreover, there isQ00 such
thatQ � (�m)Q00 andQ00 j=v Afx pg. SoQ00jR j= (AjB)fx mg, and thus(�m)(Q00jR) j= Hx:(AjB). To conclude, note thatP � (�m)(Q00jR).

4. (Left to right inclusion) Pick some processP 2 JHx:�� AKv . So,P � (�n)Q
for someQ andn such thatQ ! Q0 andQ0 2 JAfx ngKv, wheren is fresh with
respect toP andA. But thenP ! (�n)Q0. Sincen is also fresh w.r.t.(�n)Q0, we
conclude(�n)Q0 2 JHx:AKv . HenceP 2 J�� Hx:AKv . (Right to left inclusion) Take
some processP 2 J�� Hx:AKv . Then there isQ such thatP ! Q andQ 2 JHx:AKv .
ThenQ � (�n)R whereR 2 JAfx ngKv andn 62 fn(Q) [ fnv(A). Now, sinceP ! Q, by Proposition 2.15(3) there areP 0 andR0 such thatP � (�n)P 0, P 0 ! R0
andR0 � R. This means thatP 2 JHx:�� AK.

In the next section, we give further examples using the hidden name quantifier
together with recursion.

6 Recursive Definitions

The possibility of defining properties by induction and coinduction is a major source
of expressiveness of our spatial logic. Of particular interest is the combination of prop-
erties involving recursion and freshness.

6.1 Encoding Recursion

We show that recursive definitions can be expressed in the logic via second order quan-
tification and the guarantee operator. We begin by encoding validity of a formulaA by�:A (see Section 4.2.1):!A , (A) F) . F (Validity)

We compute: J!AKv = J(A) F) . FKv= fP j Forall R:R 2 JA) FKv ) P jR 2 ;g= fP j Forall R::R 2 JA) FKvg= fP j Forall R:R 2 JAKvg= if JAKv = P thenP else;
Next, we can useJ!(A) B)Kv to say thatJAKv is included inJBKv :A Z) B , !(A) B) (Entailment)
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Then JA Z) BKv = J!(A) B)Kv= if JA) BKv = P thenP else;= if fP j P 2 JAKv ) P 2 JBKvg = P thenP else;= if JAKv � JBKv thenP else;
Finally, we can use the following formula to define the greatest propertyY such

thatY , A, providedA is monotonic inY :�Y:A , 9Y:Y ^ (Y Z) A) (Greatest fixpoint)

We can verify J�Y:AKv = J9Y:Y ^ (Y Z) A)Kv =S�2P�� \ (if � � JAKv[Y �℄ thenP else;) =Sf� j � 2 P� and� � JAKv[Y �℄g
We now show that the last line above defines a greatest fixpoint.

Lemma 6.1 For any formulaA and valuationv with fpv(A) � D(v) [ fXg the map-
pingFvA(X) given by FvA(X)(	) , JAKv[X 	℄
is a mappingP� ! P�.

Proof. Let 	 2 P�. Then	 2 PM for some finite set of namesM . Let M 0 =M [ fnv(A). Since fnv[X 	℄(A) � M [ M 0 by Theorem 4.21(1) we concludeJAKv[X 	℄ 2 PM[M 0 � P�.

A mappingf : P� ! P� is monotonicif 	 � � impliesf(	) � f(�) for all
Psets	 and�. For any mappingf : P� ! P�, afixpointof f is a Pset	 2 P� such
thatf(	) = 	. The�-greatest (respectively�-smallest) fixpoint off , if it exists, is
denoted bygfix(f) (respectivelylfix(f)). We say that a formulaA is monotonic inX
if for all valuationsv the mappingFvA(X) is monotonic. We have

Lemma 6.2 LetA be a formula monotonic inX . ThenFvA(X) has a unique greatest
fixpoint given by

gfix(FvA(X)) = J�X:AKv
Proof. First, note that althoughP� is not a complete lattice we still haveJ�X:AKv 2P� by Theorem 4.21 (1), since�X:A is definable in the logic. LetG , J�X:AKv and� , FvA(X)(G) = JAKv[X G℄. We verify thatG = �. We first check thatG � �.
If P 2 G thenP 2 	 for some	 2 P� such that	 � JAKv[X 	℄. Since	 � G,
by monotonicity, we have	 � JAKv[X G℄ = � and thusP 2 �. On the other
hand, sinceG � �, by monotonicity, we haveJAKv[X G℄ = � � JAKv[X �℄. Then� � J�X:AKv = G. Finally, if some	 2 P� verifies	 = JAKv[X 	℄ then	 � G.
Hence we conclude the result.

Note that Lemmas 4.24 and 6.2 imply soundness of the unfolding principle for�X:A, that is we haveJ�X:AKv = JAfX �X:AgKv.
Similarly we can define the least fixpoint operator�Y:A , 8Y:(A Z) Y )) Y (Least fixpoint)

and note thatJ�Y:AKv = Tf� j � 2 P� andJAKv[Y �℄ � �g. We then have
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C Neg(C) Pos(C)
F0�h�0i ; ;A ^ BAjB Neg(A) [ Neg(B) Pos(A) [ Pos(B)A)BA . B Pos(A) [ Neg(B) Neg(A) [ Pos(B)nrAA�n8x:AIx:A�� A Neg(A) Pos(A)X ; fXg8X:A Neg(A) n fXg Pos(A) n fXg
Figure 4: Negative and Positive occurrences.

Proposition 6.3 (Induction and Coinduction) Let the formulaF be monotonic inX .
For any formulaA such thatX 62 fpv(A), we have

1. valid(FfX Ag ) A)) valid(�X:F ) A)
2. valid(A) FfX Ag)) valid(A) �X:F )

Proof. (1) We assumevalid(A ) FfX Ag), and provevalid(A ) �X:F ). To
that end, we select any valuationv for A ) �X:F , any substitution� and showJ�(A)Kv � J�(�X:F )Kv . We haveJ�(A)Kv � J�(FfX Ag))Kv = J�(F )fX �(A)gKv
By Lemma 4.24,J�(F )fX �(A)gKv = J�(F )Kv[X J�(A)Kv℄. By assumption we haveJ�(A)Kv � J�(F )Kv[X J�(A)Kv℄. Hence,J�(A)Kv � J�(�X:F )Kv . (2) Similar to (1).

Along usual lines, some syntactical conditions on the free occurrences ofX in a
formulaA can be imposed in order to ensure monotonicity onX of A.

Definition 6.4 (Negative and Positive Occurrences)For any formulaC, the setNeg(C)
(resp. Pos(C)) of the variables which occur negatively (resp. positively) in C are in-
ductively defined in Fig. 4.

We say that a propositional variableX is positive(resp.negative) in A if X 2 Pos(A)
(resp.X 2 Neg(A)). We also say that a formulaA is monotonic inX (resp. anti-
monotonic inX) wheneverX 62 Neg(A) (resp.X 62 Pos(A)). Note that a variableX
can be both positive and negative in a formulaA. Moreover, ifX is either positive or
negative inA thenX 2 fpv(A). We have

Proposition 6.5 (Monotonicity) For all formulasA, appropriate valuationsv, and
Psets	;�

1. IfX 62 Neg(A) and	 � � thenJAKv[X 	℄ � JAKv[X �℄.
2. IfX 62 Pos(A) and	 � � thenJAKv[X �℄ � JAKv[X 	℄.
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Proof. See Appendix.

Alternatively, a semantic monotonicity property can be expressed within the logic.
Then, the definition of fixpoints and the derivation of their properties (e.g. unfolding)
can be carried out entirely within the logic (by carrying along monotonicity assump-
tions), without relying on metatheorems such as Proposition 6.5. To this end, for any
formulaA with Z free, andX;Y fresh we can define:AfZ+g , !8X:8Y:(X Z) Y )) (AfZ Xg Z) AfZ Y g)
We can verify:JAfZ+gKv = if (Forall � and	: � � 	) JAKv[Z �℄ � JAKv[Z 	℄) thenPelse;
where the formula in parentheses expresses the monotonicity of the mapping� 7!JAKv[Z �℄, which is fromP� to P� by construction.

6.2 Recursion and Freshness

The semantics of the fresh quantifierIx:A is based on finding fresh names outside offnv(A) = fnv(Ix:A), and therefore outside the support ofJIx:AKv (by Lemma 4.22).
The fact that names outside the support can be freely renamed(cf., Theorem 4.21(2)
and Lemma 4.25) implies that any choice for a fresh name will work equally well.

It is instructive to see how freshness interacts with recursion. Consider the formula�Y:Ix:nhxi . �� Y
By the fixpoint unfolding property, this formula must have the same meaning asIx:nhxi . �� (Ix0:nhx0i . �� � � � )
Obviously, thefn�(�) of the original formula and of its expansion are the same. So,
“at each iteration” we have to choose fresh names outside thesame set of names, and
there is an infinite supply of them. Moreover, at each iteration, thenfP j n 2 fn(P )g
part of the semantic definition ofIx:A subtracts those processes that use names that
have been chosen in previous iterations. Further, since thefresh names used at each
iteration can be freely renamed, they do not affect the support set, by Definition 4.1(2).

As already discussed, the notion of finite support and Pset seems crucial for the se-
mantics ofIx:A. In particular, without a notion of finite support (cf., Definition 4.1(2)),
it seems natural to setfnv(X) , fn j n 2 fn(P ) andP 2 v(X)g, since we must some-
how take into account the names contributed by (a binding of)X . Then, consider the
set	 = fphpig� and the formulaA = Ix:(:xhxijX), with fn [X 	℄(A) = fpg. We
can easily check thatqhqijphpi 2 JAK[X 	℄ = [n62fpg(J:nhnijXK[X 	℄ n fP j n 2 fn(P )g)
Now consider� = frhri j r 2 �g� with fn [X �℄(A) = �. So we have thatqhqijphpi 62 JAK[X �℄ = ;. Hence,	 � �, but JAK[X 	℄ 6� JAK[X �℄; a fail-
ure of monotonicity.

Instead, in our semanticsIx:A is a monotonic operator, (see Proposition 6.5 (1,2)),
the functional associated with a fixpoint formula�X:A is in fact a monotonic operatorP� ! P� (see Lemma 6.1).
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6.3 Using Recursion

By combining fixpoints formulas with hidden name quantification we can describe a
“nonce generator”, that is, a process that sends an unbounded number of fresh names
on a channel: �X:Hx:mhxijX
We can verify that!(�n)mhni j= �X:Hx:mhxijX . Let� = fP j P � !(�n)mhnig.
We have that� 2 Pfmg. It suffices to check that� � JHx:mhxijXK[X �℄. For this,
take anyP 2 �, so that we haveP � !(�n)mhni � (�n)mhnij!(�n)mhni. The
left subprocess is inJHx:mhxiK[X �℄, and the right one is in� = JXK[X �℄. More
generally, we can verify thatP j= A implies!P j= �X:(AjX).

The standard “always in the future”�A and “eventually in the future”�A modali-
ties of (branching time) temporal logic are defined as usual:�A , �X:(A ^�X) (Always)�A , �X:(A _ ��X) (Sometime)

For these connectives we haveP 2 J�AKv if and only if for allQ such thatP �! Q we haveQ 2 JAKvP 2 J�AKv if and only if there isQ such thatP �! Q andQ 2 JAKv
By combining fixpoints with spatial and temporal connectives one can define many
interesting properties. For instance, consider the following formulas:

Client, Hx:(Proto(x)jRequest(x))
Server, �Y:Ix:Proto(x) . �(Handler(x)jY )

A processP realizes theClient specification if it is built out of two components satis-
fying Proto(x) andRequest(x) wherex is a hidden name ofP . The intention is that
Proto(x) specifies some protocol thatP can perform with its environment, making use
of the hidden namex, whileRequest(x) describes further properties ofP with respect
to x. For example, we may have

Proto(x) , nhxi
meaning that the protocol is just to send the namex on channeln.

FormulaServerspecifies a somewhat more involved property. By unfolding the
recursive definition, we conclude thatServerdenotes the greatest property such that

Server, Iy:Proto(y) . �(Handler(y)jServer)
Hence, a processQ satisfies theServerspecification if in presence of another process
executingProto(y) for some/any fresh namey, Q is guaranteed to evolve to a sys-
tem composed of two parts, one satisfying propertyHandler(y), and other satisfying
propertyServer(for example, a copy of the initial process). Note that the guarantee is
provided just for protocols that play according toProto(y) for a fresh name(nonce)y
(fresh with respect to theServer). We can then verify that the following entailment is
valid

ServerjClient Z) �(ServerjHx:(Request(x)jHandler(x)))
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This formula means that any system composed by aClient and aServeris guaran-
teed to possibly evolve to a configuration where aServerpersists along with a pair of
processes,Request(x) andHandler(x), that share a secretx.

We can also introduce the following derived operators and study their characteriza-
tion

group A , �X:(0 _ AjX) (Group)
inside9 A , �X:(A _ Hx:X)
inside8 A , : inside9 :A
✧A , inside9(AjT) (Somewhere)

✧A , inside8(AkF) (Everywhere)

The formulagroup A holds of any processP such thatP � Q1j : : : jQk for some
processesQ1; : : : ; Qk, where eachQi satisfiesA.

The formulainside 9A holds of any processP such thatP � (�n1) � � � (�nk)Q
for some fresh namesn1; : : : ; nk and processQ, whereQ satisfiesA.

Lemma 6.6 We haveJ�X:(A _ Hx:X)Kv = f(�n1) � � � (�nk)Q j Q 2 JAKv andni 62 fnv(A)g�
Proof. Let 	 , f(�n1) � � � (�nk)Q j Q 2 JAKv andni 62 fnv(A)g�. Let M =fnv(A) = fnv(inside 9A); it is easy to check that	 2 PM . 	 is closed under
structural congruence by construction. Also, pick any processP 2 	, namesp; q 62M and let� = fp$qg. ThenP � (�n1) � � � (�nk)Q whereQ 2 JAKv . Hence�(P ) = (��(n1)) � � � (��(nk))�(Q), and we have�(Q) 2 JAKv . We want to show
that	 = J�X:(A _ Hx:X)Kv.

We first prove	 � J�X:(A _ Hx:X)Kv . To that end, we take any� 2 PM such
thatJA _ Hx:XKv[X �℄ � � and verify	 � �.

PickP 2 	. ThenP � (�n1) � � � (�nk)Q andQ 2 JAKv , for somek � 0. We
show by induction onk thatP 2 �.

If k = 0, we haveP � Q 2 JAKv , and thusP 2 JA _ Hx:XKv[X �℄ by Re-
mark 4.19, sinceX is not free inA. HenceP 2 �. If k > 0 we haveP � (�n1)P 0
whereP 0 = (�n2) � � � (�nk)Q 2 	. By induction hypothesis, we haveP 0 2 �.
HenceP 0 2 JXKv[X �℄. ThusP 2 Jn1rXKv[X �℄. We haven1 62 fn(P ) andn1 62 M = fnv[X �℄(X) = fnv[X �℄(Ix:xrX). ThenP 2 JHx:XKv[X �℄,
and soP 2 JA _ Hx:XKv[X �℄. We concludeP 2 �, also in this case. Hence	 � J�X:(A _ Hx:X)Kv .

Finally, to showJ�X:(A _ Hx:X)Kv � 	, it suffices to verify the inclusionJA _
Hx:XKv[X 	℄ � 	. If P 2 JA _ Hx:XKv[X 	℄ then eitherP 2 JAKv and thusP 2 	, or P � (�n)P 0 whereP 0 2 	 andn 62 fnv(A) [ fn(P ). In the last case, is
also immediate thatP 2 	. We conclude	 = J�X:(A _ Hx:X)Kv.

A processP satisfies✧A if and only if somewhere insideP , possibly under some
restricted names, there is a component satisfyingA. In a similar way, a process satisfies
inside8 A if and only if for all namesn1; : : : ; nk fresh with respect toA, and processesQ such thatP � (�n1) � � � (�nk)Q,Q satisfiesA.

A processP satisfies ✧A if and only if all components ofP , regardless of the local
name context in which they are placed, satisfyA. For example, a processP satisfies the
closed formula✧:9x:9y:xhyi if and only if it contains no unguarded messages. Thus
the formula ✧:9x:9y:xhyi ) �F, asserting that every process without unguarded
messages is bound to inactivity, is logically valid.
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For an example of a property making use of several of the spatial and temporal
modalities consider

Member(x) , cx ^ 8y:(yhxijT ) y = x)
Group, �Hx:(group Member(x))

A process satisfiesGroup if all of its future states will always be composed by a group
of processes sharing a secretx, and such that each member of the group is only able to
sendx onx itself: in particular, this means that no group member can send the secretx on a public channel, sincex is a restricted (hence not public) name in the whole
process.

7 Discussion

7.1 Structural Congruence and Intensionality

Structural congruence is usually considered just as a technical device, as a convenient
intermediate step towards what really matters: a behavioral semantics of processes.
In this views, structural congruence seems to have no interesting meaning in itself.
Processes are seen more as pure behaviors than as computational systems possessing
interesting structural properties. Then, process operators are seen as mappings behav-
iors to behaviors, completely forgetting the structure of processes and their individual
identity. So, any interpretation of structural congruencemay appear as strangely inten-
sional.

However, spatial structure (i.e. something finer than behavioral equivalence) has
always been discussed in the concurrency literature. For instance, at the beginning
of his 1989 “Communication and Concurrency” book, Milner says: ”Underlying both
these notions is the assumption that each of the several parts of such a system has its
own identity which persists through time [: : : ] For if we wish to identify a particu-
lar event we have little choice but to identify the agents which participate in it; this
amounts to determiningwhere, i.e. at which part or parts, the event occurs”. Early pa-
pers on CCS made a precise distinction between static (spatial) and dynamic (temporal)
operators. The view of a concurrent system as a spatially distributed collection of inter-
acting agents is also implicitly present in the actors modeland in the Chemical Abstract
Machine model; the latter was the inspiration for the structural-congruence-based pre-
sentation of�-calculus [26]. The spatial view of a system of processes appears again
in the bi-graphical models Milner is considering recently [28].

Increasingly, the emphasis has been shifting, both in practice and in theory, from
concurrentsystems todistributedsystems. We see a distributed system as a kind of ac-
tive data structure, with localized parts and an internal architecture. Different internal
architectures should not be equated, or everything might collapse to the single-machine
case. So this is not a question of intensionality but rather aquestion of expressive (or
observational) power. It is also important to realize that well-known extensional tech-
nical tools carry over naturally to the spatial case, and arenot restricted to a particular
view of the world. Such is the case for Hirshckoff, Lozes and Sangiorgi’s space-time
bisimulation [23].

Admittedly, we take a rather radical position here, basing our logic entirely on the
intentional interpretation. It would be conceivable, for example, to have two kinds of
parallel composition, only one of which having a spatial flavor. But, in any case, a
structural congruence relation is needed to model some definite properties of space, in
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the same way as (labeled) reductions model properties of behavior. Both dimensions
seem useful in the design of a calculus of concurrency. Both dimensions induce partic-
ular structures whose properties are important; we seek logics to specify both kinds of
properties.

7.2 Structural Congruence: Technical Aspects

In retrospect, we may justify the introduction of structural congruence in process cal-
culi, factoring it out from other process congruences like bisimulation, not just as a
technical device towards something else, but as a way to model notions of spatial struc-
ture into the process model.

There is still, however, a hard question about what exactly should be the rules
of structural congruence. There has always been a gray area between equivalences
embedded in structural congruence and equivalences derived by extensional means.
Even some properties of structural congruence that we adopt, such as the expansion
law for replication!P �!P jP , have a rather doubtful spatial interpretation. Still, over
time, a rather standard set of rules has emerged. Some rules have been motivated
by decidability concerns [18, 13, 12], which turn out to be central to any practical
application of our logic.

We feel we have made some contribution to this issue, becausesome expected or
convenient logical properties require certain propertiesof structural equivalence. This
way, we helped wrestle some equations out of the gray area, namely the commutation
of input with restriction.

Still, one may wonder: what is the equivalence induced by such an intensional
logic, and how sensitive is it to the definition of structuralcongruence? (C.f. [22, 29].)
For the closely related Ambient Logic, Sangiorgi has shown that logical equivalence
characterizes (essentially) the structural congruence relation adopted there [33], and
we expect similar results to hold in many spatial logics. We also expect this kind of
results to facilitate decisions about the definition of structural congruence.

7.3 Logical Adjuncts

The guarantee operator was invented very early in the work onthe Ambient Logic [10],
in order to write security specifications for processes working in hostile contexts. Only
afterwards we realized that guarantee was the natural adjunct of composition, and that
the adjunction property greatly simplified the system of axioms that we were deriving
from the satisfaction semantics.

This aspect of the early logic was so satisfactory that we actively went looking for
other adjunctions (for ambient formation, and for revelation as in this paper). While
these other adjuncts are not immediately intuitive, they too have strong logical prop-
erties that can be used effectively in algebraic manipulations (e.g. for hiding we get:(A�n) � � (:A)�n). Each adjunct has an interpretation in terms of a security
property: for guarantee it is correctness in presence of a contiguous attacker, and for
hiding it is correctness in presence of an attacker that cutsa channel to the outside
world.

Adjuncts eliminate the need for other operators, and therefore ultimately simplify
the logic. For example, via adjuncts we can define name equality. More interest-
ingly, Sangiorgi characterized logical equivalence in theAmbient Logic [33] by clev-
erly defining logical formulas that capture certain processbehaviors. One of those
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formulas corresponds to input processes, for which, like inthe present logic, we did
not have (and, as it turns out, we did not need) a primitive logical operator.

Rather surprisingly, the guarantee operator can be used to define an internal notion
of validity and satisfiability. Initially this seemed a curiosity, but we were able to
take advantage of it in a definition of recursive formulas that led to a considerable
simplification in the proof of the main theorem (as discussedbelow).

Adjuncts fit naturally in the sequent structure investigated in Part II of this paper,
where guarantee is the natural “implication” that corresponds to the composition “con-
junction”, leading to a “modus ponens” style rule. Moreover, in recent work [7] it
is shown that the guarantee operator is tractable in a finite case, even if it appears to
quantify over an infinite collection of contexts.

7.4 Second Order and Recursion

The second order quantifier was introduced at a late stage. Upto that point [4] we had
greatest fix-point formulas as a primitive, with a syntacticmonotonicity restriction.
The proofs of Theorem 4.21 and the equivalent of Lemmas 6.1-6.2 were entangled by
a mutual induction, because the fixpoint case of Theorem 4.21had to rely on a mono-
tonicity property. This made both the statement and the proof of Theorem 4.21, and the
structure of the paper, more complex and obscure. The second-order quantifier does
not introduce such difficulties, allowing for a self-contained proof of Theorem 4.21.

Via second order quantification and guarantee we are then able to define greatest
and least fixpoints, and we can derive their rather subtle properties and rules. More-
over, we can define monotonicity assumptions internally, without having to rely on a
meta-level restrictions on the syntax. This way, the treatment of recursion becomes
completely formal and internal to the logic. We believe thisis preferable even indepen-
dently of the above argument about proof techniques.

Alternatively, we could have derived the recursion lemmas from general properties
of Nominal Set Theory [19, 31] (in fact, Psets are nominal sets). However, for the sake
of concreteness, we preferred to work them out in detail, in astandard set theoretic
framework.

7.5 Alternative Semantics

In the definition of the semantics for our logic, the structure of Psets is put to use
only in the clause for the second-order quantifier, and in theclause for the freshness
quantifier (becausefnv(A) usessupp(�)). But if we consider a restricted logic without
second-order connectives (or fixpoints) and propositionalvariables, it turns out thatJAK is a set of processes finitely supported byfn(A), for very general reasons related to
equivariance properties of satisfaction. Therefore, the framework of Psets and Gabbay-
Pitts’s theory of�-conversion based on transpositions [20, 19, 31] seems to bethe
natural setting to develop the semantics of our logic. Nevertheless, we may discuss
alternative formalizations of notions of freshness.

For example, in [6, 3] the satisfaction relation for a related logic is indexed not
only by a valuationv, as in our current semantics, but also by a finite set of names�
(a signature): a closely related approach has been adopted by Dam in his development
of modal logics for the�-calculus [16, 17]. In the former approaches,�;P j=v A is
only defined when the free names ofP andA are included in� (roughly, because free
names in the image ofv must also be taken into account), and we writeP 2 JAK�v
when�;P j=v A. The signature� is mainly useful to assist in the generation of fresh
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witnesses, namely, in the semantics in [2],� is extended element by element in the
semantic clauses for the universal and the hidden name quantifier (a primitive). For
instance, the semantics of the hidden name quantifier is defined thus:�;P j=v Hx:A if and only ifP � (�n)Q and�; n;P j=v Afx ng
where freshness is ensured by the provison 62 �.

Although in principle this approach should also work for ourlogic, we find that
the technical development would not turn out to be simpler. The explicit indexing of
the semantics over signatures causes satisfaction to be toosensitive to the name frame
one chooses:e.g., for no finite set of names� we getJTK� = P , while in our present
semantics we concludeJTK = P immediately.

Another inconvenience of the explicit indexing is the need it brings, in our case,
of obtaining technical principles of preservation of satisfaction under renaming, thin-
ing and weakening of the signature. Such principles are needed, for instance, to show
the spatial extrusion properties of the hidden name quantifier (Lemma 5.5(2)), and
the counterpart of the Gabbay-Pitts property, which are automatic in our more lax se-
mantics. These are specific requirements of the semantics ofour logic, related to the
presence of the tensor and modalities for name restriction,that do not arise in more
standard logics for the�-calculus [16, 17].

Some technical complications also arise in the definition ofthe semantics of fix-
points and related propositional variables, that would also carry over to the semantics
of second-order quantification. In fact, suppose we defineJ�X:BK�v ,\f	 � P(�) j JBK�v[X 	℄ � 	g
whereP(�) is the set of all processes with free names included in�. Now, consider
the following formula (N.B.NoResis defined in Section 5.3)A , �X:(NoRes_ Hx:X)
Intuitively, the formulaA is satisfied by all processes one gets by embedding a rest-
riction-free process under a certain number of restrictions, more precisely, by all pro-
cesses of the form(�n1) � � � (�nk)Q with Q restriction-free. Now, considerJAK;, the
set of all processes without free names that satisfyA. We expecte.g., (�n)nhni 2JAK;. However, by the candidate definition above we get(�n)nhni 62 JAK;, be-
causeJNoResK; = f0g, the set� , f0g verifiesJNoRes_ Hx:XK;[X �℄ = � and(�n)nhni 62 �. This shows that such semantic definition for the least fixpoint is not
adequate. Then, to get a correct definition, compatible withthe J�K�v semantics, in-
stead of ranging	 over all subsets ofP(�) we must range	 over a larger collection
of subsets ofP . Such a collection turns out to be essentially the collection of all Psets
supported by� (in the sense of the present semantics). In fact, by working inside the
domain of PsetsP�, we can define the semantics of least-fixpoint in quite standard
terms: J�X:BKv ,\f	 2 P� j JBKv[X 	℄ � 	g
as shown in Section 6 (and indirectly in [4]). Another possibility, adopted in [16, 17],
it to forbid all occurrences of free names in fixpoint formulas, requiring instead the ex-
plicit parametrisation of propositional variables on the set of “free” names their deno-
tations can use. Such technique seems difficult to adopt in our case, because it requires
formulas and propositional variables to be assigned fixed arities. This makes it hard
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to obtain,e.g., the needed signature weakening principle, or a general substitutivity
principle (Lemma 4.29 and Proposition 4.30).

Another aspect that deserves some discussion relates to ouruse offnv(A) in the
semantic definition of freshness. Our definition of the semantics of freshness makes
use of the auxiliary conceptfnv(A), the set of free names in a formulaA under a valu-
ationv (Definition 4.16). The set of namesfnv(A) gives a bound to the support of the
property set denoted byA underv, and is fully justified by Theorem 4.21 (1). However,
we may question why in the definition offnv(A) both syntactic (the free names ofA)
and semantic information (the support of the Psets inv) come into play. To remove this
explicit reference to the free names ofA, we might consider an alternative presentation
of the logic, where pure names are banned from the syntax of formulas, and semantics
is defined with relation to extended valuations interpreting not just propositional vari-
ables, as in our preferred semantics, but also name variables. This alternativeJ�K��
semantics avoids any mention of the free names of the formulaA and is equivalent to
the one given: we can verify that ifvV andvX are the restrictions of a valuationv to V
andX respectively, then we haveJAK�v = JvV (A)KvX for all formulasA and valuationsv. The semantics of the freshness quantifier could then be given byJIx:AK�v , [n62I(v)(JAK�v[x n℄ n fP j n 2 fn(P )g)
whereI(v) is the image (or range) of a valuationv, defined byI(v) , fv(x) j x 2V \D(v)g [Sfsupp(v(X)) j X 2 X \D(v)g. Note that in this definition names are
picked fresh with respect to the “global” setI(v), instead of the “local” setfnv(A):
this fact has some unfortunate consequences. Namely, the counterpart of Remark 4.19,
stating invariance of the semantics with respect to weakenings of valuations, would
then require an extended amount of properties (e.g., the Gabbay-Pitts property, Propo-
sition 5.1), to be established at an early stage of the development, namely as additional
clauses to the statement of the main theorem (Theorem 4.21).

8 Conclusions

We have investigated the satisfaction relation for a logic of concurrent processes that
includes spatial operators, freshness quantifiers, and recursive formulas. In particular,
we have shown how coinductively defined logical properties including freshness quan-
tification can be given a semantics in terms of maximal fixpoints in a lattice of finitely
supported sets of processes.

The logical rules arising from such a satisfaction relationare investigated in Part
II of this paper [5]. Several interesting logical properties have already been discussed
with respect to this model.

Some properties of the logic are very sensitive to the formulation of structural con-
gruence (in fact, Sangiorgi has shown that the process equivalence induced by a similar
logic is essentially structural congruence [33]). There isalways a tension between em-
bedding an expected process equivalence into the definitionof structural congruence,
or leaving it as a derived behavioral equivalence. Some desired logical properties have
provided new insights into this delicate balance.

The general structure of our definitions can be easily adapted to various process
calculi, and is also largely independent from the details ofthe operational semantics.
Although the semantics considered here is based on unlabeled transition systems, it
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could be extended in a natural way to labeled transition systems, motivating then the
introduction of Hennessy-Milner-like “labeled” modalities into the spatial logic. Nev-
ertheless, some basic features of what a formula denotes, namely closure under struc-
tural congruence and finite support, should be expected to hold in all variations.

In conclusion, the general term of “spatial logic” has a fairly well defined, though
informal, meaning. A spatial logic always offers a degree ofintensionality, in order
to talk about fine details of process structure. This is what is required if we want to
meaningfully describe the distribution of processes and the use of resources over a
network.
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Appendix (Proofs)

Lemma 4.3

For all finiteN � �,

1. If N � N 0 thenPN � PN 0 .
2. (Bottom and Top); 2 PN andP 2 PN .

3. (Meet and Join) IfS � PN then
TS 2 PN and

SS 2 PN .

4. (Inverse) If	 2 PN then	 = P n	 2 PN .

Proof.
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1. Pick	 2 PN . Now,	 is closed under�; we must just verify that	 is supported
byN 0. Pickm;n 62 N 0. SinceN � N 0, we havem;n 62 N . Therefore, since	 2 PN , for all P 2 	, we havePfm$ng 2 	. Thus	 2 PN 0 .

2. Immediate.

3. LetS � PN .

(a) PickP 2 TS. Then, for all	 2 S, we haveP 2 	 and	 2 PN . Now, ifQ � P , thenQ 2 	, for all 	 2 S. ThusQ 2 TS. Now letm;n 62 N . We
havePfm$ng 2 	, for all 	 2 S. HencePfm$ng 2 TS. We concludeTS 2 PN .

(b) PickP 2 SS. Then, there is	 2 S such thatP 2 	 and	 2 PN . Thus, ifQ � P , thenQ 2 	 � SS. Now letm;n 62 N . Then,Pfm$ng 2 	 � SS.
Hence

SS 2 PN .

4. Assume	 2 PN . PickP 2 	. LetQ � P and supposeQ 62 	. ThenQ 2 	
andP 2 	, contradiction. HenceQ 2 	. Likewise, pickm;n 62 N and supposePfm$ng 62 	. ThenPfm$ng 2 	, and this impliesP 2 	, a contradiction.
Hence we must havePfm$ng 2 	. We conclude	 2 PN .

Lemma 4.11

1. For any processP and Pset	, P 2 �(	) if and only if �(P ) 2 	.

2. 	 2 PN if and only if �(	) 2 P�(N).
3. If m;n 62 N and	 2 PN thenfm$ng(	) = 	.

Proof.

1. LetP 2 �(	). Then there isQ 2 	 with �(Q) = P . ThusQ � �(P ). Since	
is closed under�, �(P ) 2 	.

2. Assume	 2 PN . PickP 2 �(	). We haveP = �(Q) for someQ 2 	.

PickR � P . Hence we have�(R) � Q, and thus�(R) 2 	, by closure under� of 	. ThereforeR 2 �(	), and we conclude that�(	) is closed under�.

Now, pickm;n 62 �(N), and let� 0 = fm$ng. We have�(m); �(n) 62 N .
Thusf�(m)$�(n)g(Q) 2 	. This implies�(f�(m)$�(n)g(Q)) 2 �(	).
But �(f�(m)$�(n)g(Q)) � fm$ng(�(Q)) � � 0(P ), by Proposition 2.4(2).
Hence� 0(P ) 2 �(	). We conclude�(	) 2 P�(N).

3. AssumeP 2 	 2 PN . Thenfm$ng(P ) 2 	, and thusP 2 fm$mg(	).
On the other hand, ifP 2 fm$mg(	) then there isQ 2 	 such thatP =fm$mg(Q). But fm$mg(Q) 2 	, soP 2 	.
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Proposition 4.10

For all finiteN � �, (PN ;�;S;
;1) is a commutative quantale.Proof. We first
verify that(PN ;
;1) is a commutative monoid.

First, note that1 is closed under� by definition. Moreover, for anyP 2 1 and
transposition� , we have�(P ) � �(0) � 0. Hence,�(P ) 2 1, for any transposition� .
We conclude that1 2 PN .

To verify that
 is a binary operation onPN , pick any	 and� in PN , and someP 2 	
�. If P 0 � P thenP 0 � QjR whereQ 2 	 andR 2 	. HenceP 0 2 	
�.
Moreover, ifm;n 62 N and� = fm$ng, then�(P ) � �(QjR) � �(Q)j�(R). Since�(Q) 2 	 and�(R) 2 �, we conclude�(P ) 2 	
 �. Now, from simple properties
of structural congruence it follows that
 is commutative, associative, and has unit1.

Since(PN ;�;[;\) is a complete lattice, and thus closed under arbitrary joins, it
remains to verify that
 distributes over arbitrary joins, that is	 
 SS = Sf	 
� j � 2 Sg, for anyS � PN . But this is an immediate consequence of the definition
of 
.

Proposition 4.13

Let� 2 PN then

1. There is a least set of namessupp(�) such that� 2 Psupp(�).
2. For any transposition� , if supp(�) =M thensupp(�(�)) = �(M).

Proof. (1) See [19] Proposition 3.5.
(2) Let � be a transposition,� be a Pset and assumesupp(�) = M . This means

that� 2 PM and for allN such that� 2 PN we haveM � N . To verify that
supp(�(�)) = �(M) we need to show�(�) 2 P�(M) (which holds by Lemma 4.11(2))
and that for all finiteM 0 such�(�) 2 PM 0 we have�(M) � M 0. So, take a finite
set of namesM 0 and assume�(�) 2 PM 0 . Thus� 2 P�(M 0), by Lemma 4.11(2). By
assumption, we concludeM � �(M 0). But then�(M) � M 0 (for � is an bijective
mapping}fin(�)! }fin(�)), and we are done.

Theorem 4.21

For any formulaA and valuationv
1. JAKv 2 Pfnv(A).
2. For all transpositions� , �(JAKv) = J�(A)K�(v).

Proof. The proof of (1—2) proceeds by mutual induction on the size ofthe formulaA. Instead of the equality in (2) we prove that�(JAKv) � J�(A)K�(v). From this
fact, the equality immediately follows. Indeed, pickP 2 J�(A)K�(v), we have�(P ) 2�(J�(A)K�(v)) � J��(A)K��(v) = JAKv , henceP 2 �(JAKv).� CaseA = F

(1) ClearlyJFKv = ; 2 Pfnv(F).
(2) Trivial, since�(JFKv) = �(;) = ;.
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� CaseA = B ^ C.

(1) ThenJB ^ CKv = JBKv \ JCKv .

By induction hypothesis (1) and Lemma 4.3(1) bothJBKv andJCKv belong toPfnv(A). We conclude by Lemma 4.3(3).

(2) Let � be a transposition. IfP 2 �(JA ^ BKv) then there isP 0 such thatP = �(P 0) with P 0 2 JAKv andP 0 2 JBKv . ThenP 2 �(JAKv) andP 2�(JBKv). By induction hypothesis (2),P 2 J�(A)K�(v) andP 2 J�(B)K�(v).
Hence,P 2 J�(A ^B)K�(v).� CaseA = B ) C.

(1) PickP 2 JB ) CKv . Therefore, ifP 2 JBKv thenP 2 JCKv . By induction
hypothesis (1),JBKv 2 Pfnv(B) andJCKv 2 Pfnv(C) .

Pick anyQ � P . AssumeQ 2 JBKv . ThenP 2 JBKv and thusP 2 JCKv .
HenceQ 2 JCKv , and we concludeQ 2 JB ) CKv .

Now pickm;n 62 fnv(B ) C) and let� = fm$ng. We have,m;n 62 fnv(B)
andm;n 62 fnv(C). Assume�(P ) 2 JBKv . ThusP 2 JBKv by induction
hypothesis (1). ThenP 2 JCKv and by induction hypothesis (1) again�(P ) 2JCKv . Hence�(P ) 2 JB ) CKv .

(2) Let � be a transposition. PickP 2 �(JB ) CKv). Then,�(P ) 2 JBKv
implies�(P ) 2 JCKv . AssumeP 2 J�(B)K�(v). By induction hypothesis (2),
we conclude�(P ) 2 JBKv . Then,�(P ) 2 JCKv . By induction hypothesis (2)
again,P 2 J�(C)K�(v). ThereforeP 2 J�(B ) C)K�(v).� CaseA = 0.

(1) J0Kv = 1 2 Pfnv(0) = P; by Proposition 4.10.

(2) Let � be a transposition. PickP 2 �(J0Kv). Then�(P ) � 0 andP � 0. SoP 2 J�(0)K�(v) = 1.� CaseA = BjC.

(1) By induction hypothesis (1) and Lemma 4.3(1) we haveJBKv 2 Pfnv(B) �Pfnv(BjC). Likewise we concludeJCKv 2 Pfnv(BjC).
By Proposition 4.10,JBjCKv = JBKv 
 JCKv 2 Pfnv(BjC).
(2) Let � be a transposition. PickP 2 �(JBjCKv). Hence�(P ) � Q0jQ00 withQ0 2 JBKv andQ00 2 JCKv , for someQ0 andQ00. Then�(Q0) 2 �(JBKv),
and �(Q0) 2 J�(B)K�(v), by induction hypothesis (2). Likewise,�(Q00) 2J�(C)K�(v). Hence�(Q0jQ00) 2 J�(BjC)K�(v). To conclude, just note thatP � �(Q0jQ00).� CaseA = B . C.

(1) PickP 2 JB .CKv . Then, for allQ 2 JBKv , we haveQjP 2 JCKv . Pick anyP 0 � P , and anyQ0 2 JBKv . We haveQ0jP 0 � Q0jP . By assumption,Q0jP 2JCKv , and, by induction hypothesis (1),Q0jP 0 2 JCKv . HenceP 0 2 JB . CKv .

Pickm;n 62 fnv(B .C) and let� = fm$ng. Thenm;n 62 fnv(B) andm;n 62fnv(C). Now, pick anyQ0 such thatQ0 2 JBKv . By induction hypothesis (1),�(Q0) 2 JBKv . Therefore�(Q0)jP 2 JCKv . By induction hypothesis (1) and
Proposition 2.12(3),�(�(Q0)jP ) � Q0j�(P ) 2 JCKv . Hence�(P ) 2 JB . CKv .
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(2) Let � be a transposition. PickP 2 �(JB . CKv). Then there isP 0 � �(P )
such that for allQ 2 JBKv , we haveQjP 0 2 JCKv . Pick anyQ0 2 J�(B)K�(v).
Then �(Q0) 2 �(J�(B)K�(v)). By induction hypothesis (2),�(Q0) 2 JBKv .
Then�(Q0)j�(P ) 2 JCKv . So,Q0jP 2 �(JCKv). By induction hypothesis (2),Q0jP 2 J�(C)K�(v). HenceP 2 J�(B . C)K�(v).� CaseA = qrB.

(1) Pick anyP 2 JqrBKv . ThenP � (�q)Q andQ 2 JBKv . Pick anyP 0 �P , we haveP 0 � (�q)Q, and thusP 0 2 JqrBKv . Pickm;n 62 fnv(qrB)
and let� = fm$ng. Thenm;n 62 fnv(B), m 6= q andn 6= q. Hence�(P ) � (�q)�(Q), by Proposition 2.12(3). By induction hypothesis (1), we
have�(Q) 2 JBKv . So�(P ) 2 JqrBKv .

(2) Let � be a transposition. PickP 2 �(JqrBKv). Then there isP 0 = �(P )
such thatP 0 � (�q)Q andQ 2 JBKv . We have�(P 0) � (��(q))�(Q), by
Lemma 2.8(1). By induction hypothesis (2), we have�(Q) 2 J�(B)K�(v). HenceP = �(P 0) 2 J�(q)r�(B)K�(v) = J�(qrB)K�(v).� CaseA = B�q.
(1) Pick anyP 2 JB�qKv. Then (�q)P 2 JBKv . Pick anyP 0 � P , we
have(�q)P 0 � (�q)P , and thus, by induction hypothesis (1),(�q)P 0 2 JBKv .
Therefore,P 0 2 JB�qKv . Pickm;n 62 fnv(B�q) and let� = fm$ng. Thenm;n 62 fnv(B), m 6= q andn 6= q. By induction hypothesis (1), we have�((�q)P ) 2 JBKv . Since�((�q)P ) = (�q)�(P ), we have�(P ) 2 JB�qKv .

(2) Let � be a transposition. PickP 2 �(JB�qKv). Then there isP 0 =�(P ) such that(�q)P 0 2 JBKv . Then�(P ) 2 JB�qKv , that is,(�q)�(P ) 2JBKv . Then�((�q)�(P ) = (��(q))P 2 �(JBKv). By induction hypothesis (2),(��(q))P 2 J�(B)K�(v). HenceP 2 J�(B)��(q)K�(v) = J�(B�q)K�(v).� CaseA = phqi.
(1) We haveJphqiKv = fP j P � phqig, which is closed under� by definition.
Additionally, for all m;n 62 fp; qg, we have thatfn$mgP � phqi for allP � phqi.
(2) Let � = fm$ng. If P 2 �(JphqiKv) then�(P ) � phqi, andP � �(phqi).
It is clear thatP 2 J�(phqi)K�(v).� CaseA = Ix:B.

(1) PickP 2 JIx:BKv . Then, there isq such thatq 62 fnv(B) [ fn(P ) andP 2JBfx qgKv . PickQ � P , by induction hypothesis (1) alsoQ 2 JBfx qgKv ,
andq 62 fn(Q) by Proposition 2.12(1). ThusQ 2 JIx:BKv .

Now, pick � = fm$ng with m;n 62 fnv(Ix:B) = fnv(B). Pick anyp 62fnv(B) [ fm;n; qg [ fn(P ) [ fn(�(P )) and let� 0 = fq$pg. By induction hy-
pothesis (2), we have� 0(P ) 2 J� 0(Bfx qg)K� 0(v), that isP 2 JBfx pgKv, by
Lemma 4.11(3). By induction hypothesis (1), we conclude�(P ) 2 JBfx pgKv.
Thus,�(P ) 2 JIx:BKv , sincep 62 fnv(B) [ fn(�(P )).
(2) Let � = fm$ng. If P 2 �(JIx:BKv) then�(P ) 2 JIx:BKv and thus there
is someq 62 fnv(B) [ fn(�(P )) such that�(P ) 2 JBfx qgKv .

Now, pick p 62 fm;ng [ fn(�(P )) [ fn(P ) [ fnv(B) [ fn�(v)(�(B)) and let� 0 = fq$pg. � 0(�(P )) = �(P ) 2 J� 0(Bfx qg)K� 0(v) = JBfx pgK� 0(v).
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By Remark 4.19 we haveJBfx pgK� 0(v) = JBfx pgK� 0(w), wherew is the
restriction ofv to fpv(B).
By Lemma 4.20(1) we haveJBfx pgK� 0(w) = JBfx pgKw, sinceq; p 62
fn(w). So,�(P ) 2 JBfx pgKw.

By Remark 4.19, this implies�(P ) 2 JBfx pgKv.
But thenP 2 J�(B)fx pgK�(v), by induction hypothesis (2). We concludeP 2 J�(Ix:B)K�(v), sincep 62 fn�(v)(�(B)) [ fn(P ).� CaseA = 8x:B.

(1) Pick anyP 2 J8x:BKv . Then, for allq 2 �, P 2 JBfx qgKv.
Pick anyQ � P . For allq 2 �, by induction hypothesis (1),Q 2 JBfx qgKv .
Therefore,Q 2 J8x:BKv .

Pickm;n 62 fnv(8x:B) = fnv(B) and let� = fm$ng. We need to show that
for all q 2 �, �(P ) 2 JBfx qgKv.
For all q 62 fm;ng, by induction hypothesis (1) we have�(P ) 2 JBfx qgKv .

For q = m, we haveP 2 JBfx mgKv. Then�(P ) 2 JBfx ngK�(v), by
induction hypothesis (2).

Let w be the restriction ofv to fpv(B). Note thatm;n 62 fn(w), for if (say)n 2 fn(w), thenn 2 supp(w(X)) for someX 2 fpv(B), and we would haven 2 fnw(B) = fnv(B), a contradiction.

By Remark 4.19,�(P ) 2 JBfx ngK�(w).
Since we havem;n 62 fn(w), by Lemma 4.20(1) we concludeJBfx ngK�(w) =JBfx ngKw. By Remark 4.19,JBfx ngKw = JBfx ngKv and then�(P ) 2JBfx ngKv.
Forq = n, we conclude�(P ) 2 JBfx mgKv in a similar way.

Then�(P ) 2 JBfx qgKv , for all q 2 �; this implies�(P ) 2 J8x:BKv .

(2) Let � be a transposition. PickP 2 �(J8x:BKv). Then�(P ) 2 JBfx qgKv ,
for all q 2 �.

By induction hypothesis (2), for allq 2 �, P 2 J�(B)fx �(q)gK�(v). ThenP 2 J�(B)fx qgK�(v), for all q 2 �, since� is a bijection�! �. Therefore,P 2 J�(8x:B)K�(v).� CaseA = �� B.

(1) If P 2 J�� BKv then there isR such thatP ! R andR 2 JBKv . If Q � P
then alsoQ ! R, soQ 2 J�� BKv . Now, pickm;n 62 fnv(�� B) = fnv(B),
and let� = fm$ng. By Proposition 2.15(2),�(P ) ! �(R). By induction
hypothesis (1),�(R) 2 JBKv . Hence�(P ) 2 J�� BKv .

(2) Let � be a transposition. IfP 2 �(J�� BKv) then�(P ) 2 J�� BKv . Thus there
isQ such that�(P )! Q andQ 2 JBKv . By Proposition 2.15(2), and induction
hypothesis (2),P ! �(Q) and�(Q) 2 J�(B)K�(v). HenceP 2 J�(�� B)K�(v).� CaseA = Z.

(1) We haveJZKv = v(Z). Sincefnv(Z) = supp(v(Z)), we have thatJZKv 2Pfnv(Z).
(2) Let � be a transposition. IfP 2 �(JZKv) then�(P ) 2 v(Z). Therefore,P 2 �(v(Z)) = �(v)(Z) = JZK�(v).
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� CaseA = 8Z:B.

(1) Let v0 be the restriction ofv to the free propositional variables ofA. By
Remark (4.19), sinceJAKv = JAK0v , we show the property w.r.t.v0.
LetM = fnv0(8Z:B) = fnv0[Z ;℄(B). By Lemma 4.8, to verifyJ8Z:BKv0 2PM , it suffices to check thatS , fJBKv0[Z 	℄ j 	 2 P�g is a finitely supported
(by M ) set of Psets. Pickm;n 62 M and� 2 S: then� = JBKv0[Z 	℄
for some	 2 P� and let� = fm$ng. By induction hypothesis (2), we have
that �(�) = J�(B)K�(v0)[Z �(�)℄. Since�(v0) = v0 and�(B) = B, we have�(�) = JBKv0 [Z �(�)℄ 2 S.

(2) Let � be a transposition. LetP 2 �(J8Z:BKv). Then�(P ) 2 J8Z:BKv .
This means that for all� 2 P�, we have�(P ) 2 JBKv[Z �℄. ThereforeP 2�(JBKv[Z �℄). By induction hypothesis (2), we haveP 2 J�(B)K�(v)[Z �(�)℄,
for all � 2 P�. Since� is a bijectionP� 7! P�, we conclude that for all� 2P�, P 2 J�(B)K�(v)[Z �℄. So,P 2 J�(8Z:B)K�(v) and indeed�(J8Z:BKv) �J�(8Z:B)K.

Lemma 4.29

Let J�(A)Kv = J�(B)Kv for all substitutions� and valuationsv, and letF [�℄ be
a context. Then, for all substitutions� and valuationsw we haveJ�(F [A℄)Kw =J�(F [B℄)Kw .
Proof. By induction on the size of the contextF [�℄.� CaseF [�℄ = G[�℄) H [�℄.

By definition,J�(F [A℄)Kw is the set of all processesQ such that ifQ 2 J�(G[A℄)Kw
thenQ 2 J�(H [A℄)Kw . By induction hypothesis,J�(G[A℄)Kw = J�(G[B℄)Kw
andJ�(H [A℄)Kw = J�(H [B℄)Kw .

HenceJ�(F [A℄)Kv = J�(F [B℄)Kv .� CasesF [�℄ = G[�℄^H [�℄, F [�℄ = G[�℄jH [�℄,F [�℄ = G[�℄.H [�℄,F [�℄ =�G[�℄, F [�℄ = nrG[�℄, andF [�℄ = n�G[�℄. By induction hypothesis, as
above.� CaseF [�℄ = 8x:G[�℄. Assumex 62 D(�).
We haveJ�(F [A℄)Kw = Tn2�J�(G[A℄)fx ngKw. By induction hypothesis,J�(G[A℄)fx ngKw = J�(G[B℄)fx ngKw, for all n.

Therefore
Tn2�J�(G[A℄)fx ngKw = Tn2�J�(G[B℄)fx ngKw.

But
Tn2�J�(G[B℄)fx ngKw = J�(F [B℄)Kw .� CaseF [�℄ = Ix:G[�℄. Assumex 62 D(�).

(Left to right inclusion) PickP 2 J�(Ix:G[A℄)Kw. Then there isn 62 fnw(�(G[A℄))[
fn(P ) such thatP 2 J�(G[A℄)fx ngKw.

Let m 62 fnw(�(G[A℄)) [ fnw(�(G[B℄)) [ fn(P ), let � = fm$ng. Let u
be the restriction ofw to the free propositional variables ofG[A℄, we haveJ�(G[A℄)fx ngKw = J�(G[A℄)fx ngKu. By Theorem 4.21(2),�(P ) = P 2�(J�(G[A℄)fx ngKu) = J�(G[A℄)fx mgKu = J�(G[A℄)fx mgKw.
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By the induction hypothesis we concludeP 2 J�(G[B℄)fx mgKw.

Sincem 62 fnw(�(G[B℄)), we obtainP 2 J�(F [B℄)Kw .

(Right to left inclusion) Symmetrical.� CaseF [�℄ = X . ThenF [A℄ = X = F [B℄ and we haveJ�(F [A℄)Kw =J�(X)Kw = w(X) = J�(X)Kw = J�(F [B℄)Kw .� CaseF [�℄ = 8Z:G[�℄.
(Left to right inclusion) TakeP 2 J�(8Z:G[A℄)Kw . By definition, for all	 2P�, P 2 J�(G[A℄)Kw[Z 	℄.
By induction hypothesis, for all	 2 P�, P 2 J�(G[B℄)Kw[Z 	℄. We concludeP 2 J�(8Z:G[B℄)Kw .

(Right to left inclusion) Handled symmetrically.

Lemma 5.3

1. JIx:(AjB)Kv = JIx:AjIx:BKv 2. JIx:(A . B)Kv � JIx:A .Ix:BKv
3. JIx:�� AKv = J�� Ix:AKv 4. JIx:nrAKv = JnrIx:AKv
5. JIx:8y:AKv � J8y:Ix:AKv 6. JIx:8X:AKv � J8X:Ix:AKv

Proof. 1. (Right to left inclusion) LetP j=v Ix:AjIx:B. Then there are processesQ andR such thatP � QjR andQ j=v Ix:A andR j=v Ix:B. Pick a namen 62
fn(P )[ fnv(Ix:(AjB)). Thenn 62 fn(Q) [ fnv(Ix:A) andn 62 fn(R)[ fnv(Ix:B).
By Proposition 5.1(3) we haveQ j=v Afx ng andR j=v Bfx ng. ThenP j=vIx:(AjB) as claimed. (Left to right inclusion) Similar, use Proposition 5.1(2).

2. LetP j=v Ix:(A . B). Then for all namesn 62 fn(P ) [ fnv(A) [ fnv(B) and
any processQ such thatQ j=v Afx ng we haveQjP j=v Bfx ng. Pick anyR
such thatR j=v Ix:A. We need to show thatP jR j=v Ix:B. Pick a namep wherep 62 fn(P ) [ fn(R) [ fnv(B) [ fn(R) [ fnv(A). We haveR j=v Afx pg. By the
assumption, we concludeRjP j=v Bfx pg. But thenRjP j=v Ix:B.

3. (Left to right inclusion) LetP j=v Ix:�� A. Then there is a processQ, and a
namen, fresh w.r.t.P andfnv(A) such thatP ! Q andQ j=v Afx ng. But if n
is fresh w.r.tP it is also fresh w.r.t.Q sincefn(Q) � fn(P ). HenceQ j=v Ix:A andP j=v �� Ix:A. (Right to left inclusion) LetP j=v �� Ix:A. Then there isQ andn
fresh w.r.t.Q andfnv(A) such thatP ! Q andQ j=v Afx ng. Pick any namem,
fresh w.r.t.v andP (and thus fresh w.r.t.Q). Let � = fm$ng, by Theorem 4.21(2)
we haveQ j=v Afx mg, since�(Q) = Q, �(v) = v and�(Afx ng) = Afx mg.
HenceP j=v �� Afx mg, and thenP j=v Ix:�� A.

4. (Right to left inclusion) LetP j=v nrIx:A. Then there is a processQ such
thatP � (�n)Q andQ j=v Afx pg for all p 62 fnv(A) [ fn(Q). Let q 62 fnv(A) [
fn(Q) [ fn(P ) [ fng. ThenP j=v nrAfx qg. We concludeP j=v Ix:nrA. (Left
to right inclusion) LetP j=v Ix:nrA. Then there isq 62 fn(P ) [ fng [ fnv(A) such
thatP � (�n)Q andQ j=v Afx qg. Sinceq 6= n, we concludeq 62 fn(Q). ThusQ j=v Ix:A. We concludeP j=v nrIx:A.

5. LetP j=v Ix:8y:A. Then for allp 62 fnv(8y:A)[ fn(P ) and alln 2 � we haveP j=v Afx pgfy ng. Thus, for alln 2 � and allp 62 fng [ fnv(8y:A)[ fn(P ) we
haveP j=v Afx pgfy ng. HenceP j=v 8y:Ix:A.
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6. LetP j=v Ix:8X:A. Then for allp 62 fnv(8X:A) [ fn(P ) and all	 2 P� we
haveP j=v[X 	℄ Afx pg. Thus, for all	 2 P� and allp 62 supp(	)[fnv(8X:A)[
fn(P ) we haveP j=v[X 	℄ Afx pg. Thus, for all	 2 P� we haveP j=v[X 	℄Ix:A. HenceP j=v 8X:Ix:A.

Proposition 6.5

For any formulaA and valuationv, and Psets	, �
1. If X 62 Neg(A) and	 � � thenJAKv[X 	℄ � JAKv[X �℄.
2. If X 62 Pos(A) and	 � � thenJAKv[X �℄ � JAKv[X 	℄.

Proof. The proof of (1–2) proceeds by mutual induction on the size ofthe formulaA.
Note that the size of a formula does not change when replacingnames and variables
for names.� CasesA = F,A = 0 andphqi.

Immediate.� CasesA = B ^ C andA = �� B.

Immediate, by the induction hypothesis.� CaseA = B ) C.

(1) ThenX 62 Neg(C) andX 62 Pos(B). AssumeP 2 JB ) CKv[X 	℄.
This implies that ifP 2 JBKv[X 	℄ thenP 2 JCKv[X 	℄. AssumeP 2JBKv[X �℄. SinceX 62 Pos(B), by induction hypothesis (2),P 2 JBKv[X 	℄.
ThenP 2 JCKv[X 	℄. By induction hypothesis (1),P 2 JCKv[X �℄. HenceP 2 JB ) CKv[X �℄.
(2) Symmetric to (3).� CasesA = BjC andA = B . C
Like (CaseA = B ^ C) and (CaseA = B ) C) above.� CaseA = qrB.

(1) ThenX 62 Pos(B). AssumeP 2 JqrBKv[X 	℄. ThenP � (�q)Q andQ 2 JBKv[X 	℄. By induction hypothesis (1),Q 2 JBKv[X �℄. HenceP 2JqrBKv[X �℄.
(2) Symmetrical.� CaseA = B�q.
Like (CaseA = qrB) above.� CaseA = Ix:B.

(1) We haveX 62 Neg(Bfx ng), for all n 2 �. LetP 2 JIx:BKv[X 	℄ andw be the restriction ofv to the free propositional variables ofIx:B (we assume
thatX 2 fpv(A) otherwise the result is immediate).

By Remark 4.19,P 2 JIx:BKw[X 	℄. Then, there isq such thatq 62 fnw[X 	℄(B)[
fn(P ) andP 2 JBfx qgKw[X 	℄.
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Now, pickp 62 fnw[X 	℄(B) [ fn(P ) [ fnw[X �℄(B) and define� = fq$pg.
Note thatp; q 62 supp(	) [ fn(w). By Theorem 4.21(2), we have�(P ) = P 2�(JBfx qgKw[X 	℄) � JBfx pgKw[X 	℄, since�(	) = 	 and�(w) = w.

By induction hypothesis (1),P 2 JBfx pgKw[X �℄.
But p was chosen such thatp 62 fnw[X �℄(A), soP 2 JIx:BKw[X �℄. This
impliesP 2 JIx:BKv[X �℄, by Remark 4.19.

(4) Symmetrical.� CaseA = 8x:B.

(1) We haveX 62 Neg(Bfx ng), for all n 2 �. LetP 2 J8x:BKv[X 	℄, that
is, for alln 2 �, P 2 JBfx ngKv[X 	℄. By induction hypothesis (1), for eachn 2 �, P 2 JBfx ngKv[X �℄. HenceP 2 J8x:BKv[X �℄.
(2) Symmetrical.� CaseA = Z.

(1) The caseZ 6= X is trivial. If Z = X , the assumption yieldsJXKv[X 	℄ =	 � � = JXKv[X �℄.
(2)X 62 Pos(Z) impliesX 6= Z, and we conclude.� CaseA = 8Z:B.

(1) ThenZ 62 Neg(B). By Lemma 4.18, we may assumeZ 6= X . AssumeP 2 J8Z:BKv[X 	℄. This implies thatP 2 JBKv[X 	℄[Z �℄ for all � 2 P�.
By induction hypothesis (1),P 2 JBKv[X �℄[Z �℄, for all � 2 P�. HenceP 2 J8Z:BKv[X �℄.
(2) Symmetrical.
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